GNU/LInux

THE MAN-PAGES BOOK

Maintainers:

Alejandro Colomar <alx@kernel.org> 2020 - present (5.09 - HEAD)
Michael Kerrisk <mtk.manpages@gmail.com> 2004 - 2021 (2.00 - 5.13)
Andries Brouwer <aeb@cwi.nl> 1995 - 2004 (1.6 - 1.70)

Rik Faith 1993 - 1995 (1.0 -1.5)

intro(1) General Commands Manual intro(1)

NAME
intro — introduction to user commands
DESCRIPTION

Section 1 of the manual describes user commands and tools, for example, file manipula-
tion tools, shells, compilers, web browsers, file and image viewers and editors, and so
on.

NOTES
Linux is a flavor of UNIX, and as a first approximation all user commands under UNIX
work precisely the same under Linux (and FreeBSD and lots of other UNIX-like sys-
tems).

Under Linux, there are GUIs (graphical user interfaces), where you can point and click
and drag, and hopefully get work done without first reading lots of documentation. The
traditional UNIX environment is a CLI (command line interface), where you type com-
mands to tell the computer what to do. That is faster and more powerful, but requires
finding out what the commands are. Below a bare minimum, to get started.

Login
In order to start working, you probably first have to open a session by giving your user-
name and password. The program login(1) now starts a shell (command interpreter) for
you. In case of a graphical login, you get a screen with menus or icons and a mouse
click will start a shell in a window. See also xterm(1)

The shell
One types commands to the shell, the command interpreter. It is not built-in, but is just
a program and you can change your shell. Everybody has their own favorite one. The
standard one is called sh. See also ash(1), bash(1), chsh(1), csh(1), dash(1), ksh(1),
zsh(1)

A session might go like:

knuth login: aeb
Password: *****x*x*x
$ date
Tue Aug 6 23:50:44 CEST 2002
$ cal
August 2002
Su Mo Tu We Th Fr Sa
1 2 3
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

$ Is

bin tel

$ Is -1

total 2

drwxrwxr-x 2 aeb 1024 Aug 6 23:51 bin

Linux man-pages 6.8 2024-05-02 2

intro(1) General Commands Manual intro(1)

—rw—rw-r—— 1 aeb 37 Aug 6 23:52 tel
$ cat tel

maja 0501-1136285

peter 0136-7399214

$ cp tel tel2

$ Is -1

total 3

drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
-rw—-r——r—— 1 aeb 37 Aug 6 23:52 tel
-rw—-r——r—— 1 aeb 37 Aug 6 23:53 tel2
$ mv tel tell

$ Is -1

total 3

drwxr—xr—x 2 aeb 1024 Aug 6 23:51 bin
-rw—-r——r—— 1 aeb 37 Aug 6 23:52 tell
—-rw—-r——r—— 1 aeb 37 Aug 6 23:53 tel2
$ diff tell tel2

$ rm tell

$ grep maja tel2
maja 0501-1136285
$

Here typing Control-D ended the session.

The $ here was the command prompt—it is the shell’s way of indicating that it is ready
for the next command. The prompt can be customized in lots of ways, and one might
include stuff like username, machine name, current directory, time, and so on. An as-
signment PS1="What next, master? " would change the prompt as indicated.

We see that there are commands date (that gives date and time), and cal (that gives a
calendar).

The command Is lists the contents of the current directory—it tells you what files you
have. With a —| option it gives a long listing, that includes the owner and size and date
of the file, and the permissions people have for reading and/or changing the file. For ex-
ample, the file "tel" here is 37 bytes long, owned by aeb and the owner can read and
write it, others can only read it. Owner and permissions can be changed by the com-
mands chown and chmod.

The command cat will show the contents of a file. (The name is from "concatenate and
print": all files given as parameters are concatenated and sent to "standard output" (see
stdout(3)), here the terminal screen.)

The command cp (from "copy") will copy a file.
The command mv (from "move"), on the other hand, only renames it.

The command diff lists the differences between two files. Here there was no output be-
cause there were no differences.

The command rm (from "remove") deletes the file, and be careful! it is gone. No
wastepaper basket or anything. Deleted means lost.

The command grep (from "g/re/p") finds occurrences of a string in one or more files.

Linux man-pages 6.8 2024-05-02 3

intro(1) General Commands Manual intro(1)

Here it finds Maja’s telephone number.

Pathnames and the current directory
Files live in a large tree, the file hierarchy. Each has a pathname describing the path
from the root of the tree (which is called /) to the file. For example, such a full path-
name might be /home/aeb/tel. Always using full pathnames would be inconvenient, and
the name of a file in the current directory may be abbreviated by giving only the last
component. That is why /home/aeb/tel can be abbreviated to tel when the current direc-
tory is /home/aeb.

The command pwd prints the current directory.
The command cd changes the current directory.

Try alternatively cd and pwd commands and explore cd usage: "cd", "cd .", "cd ..", "cd
/", and "cd ~".

Directories
The command mkdir makes a new directory.

The command rmdir removes a directory if it is empty, and complains otherwise.

The command find (with a rather baroque syntax) will find files with given name or
other properties. For example, "find . —name tel" would find the file tel starting in the
present directory (which is called .). And "find / —name tel" would do the same, but
starting at the root of the tree. Large searches on a multi-GB disk will be time-consum-
ing, and it may be better to use locate(1)

Disks and filesystems
The command mount will attach the filesystem found on some disk (or floppy, or
CDROM or so) to the big filesystem hierarchy. And umount detaches it again. The
command df will tell you how much of your disk is still free.

Processes
On a UNIX system many user and system processes run simultaneously. The one you
are talking to runs in the foreground, the others in the background. The command ps
will show you which processes are active and what numbers these processes have. The
command kill allows you to get rid of them. Without option this is a friendly request:
please go away. And "kill —9" followed by the number of the process is an immediate
kill. Foreground processes can often be killed by typing Control-C.

Getting information
There are thousands of commands, each with many options. Traditionally commands
are documented on man pages, (like this one), so that the command "man kill" will doc-
ument the use of the command "kill" (and "man man™ document the command "man").
The program man sends the text through some pager, usually less. Hit the space bar to
get the next page, hit q to quit.

In documentation it is customary to refer to man pages by giving the name and section
number, as in man(1)Man pages are terse, and allow you to find quickly some forgotten
detail. For newcomers an introductory text with more examples and explanations is use-
ful.

A lot of GNU/FSF software is provided with info files. Type "info info" for an introduc-
tion on the use of the program info.

Linux man-pages 6.8 2024-05-02 4

intro(1) General Commands Manual intro(1)

Special topics are often treated in HOWTOSs. Look in /usr/share/doc/howto/en and use
a browser if you find HTML files there.

SEE ALSO
ash(1), bash(1), chsh(1), csh(1), dash(1), ksh(1), locate(1), login(1), man(1), xterm(1),
zsh(1), wait(2), stdout(3), man-pages(7), standards(7)

Linux man-pages 6.8 2024-05-02 5

getent(1) General Commands Manual getent(1)

NAME
getent — get entries from Name Service Switch libraries

SYNOPSIS
getent [option]... database key...

DESCRIPTION
The getent command displays entries from databases supported by the Name Service
Switch libraries, which are configured in /etc/nsswitch.conf. If one or more key argu-
ments are provided, then only the entries that match the supplied keys will be displayed.
Otherwise, if no key is provided, all entries will be displayed (unless the database does
not support enumeration).

The database may be any of those supported by the GNU C Library, listed below:

ahosts
When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to
enumerate the hosts database. This is identical to using hosts(5). When one or
more key arguments are provided, pass each key in succession to getaddrinfo(3)
with the address family AF_UNSPEC, enumerating each socket address struc-
ture returned.

ahostsv4
Same as ahosts, but use the address family AF_INET.

ahostsv6
Same as ahosts, but use the address family AF_INET6. The call to
getaddrinfo(3) in this case includes the Al_V4AMAPPED flag.

aliases
When no key is provided, use setaliasent(3), getaliasent(3), and endaliasent(3) to
enumerate the aliases database. When one or more key arguments are provided,
pass each key in succession to getaliasbyname(3) and display the result.

ethers
When one or more key arguments are provided, pass each key in succession to
ether_aton(3) and ether_hostton(3) until a result is obtained, and display the re-
sult. Enumeration is not supported on ethers, so a key must be provided.

group
When no key is provided, use setgrent(3), getgrent(3), and endgrent(3) to enu-
merate the group database. When one or more key arguments are provided, pass
each numeric key to getgrgid(3) and each nonnumeric key to getgrnam(3) and
display the result.

gshadow
When no key is provided, use setsgent(3), getsgent(3), and endsgent(3) to enu-
merate the gshadow database. When one or more key arguments are provided,
pass each key in succession to getsgnam(3) and display the result.

hosts
When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to
enumerate the hosts database. When one or more key arguments are provided,
pass each key to gethostbyaddr(3) or gethostbyname2(3), depending on whether
a call to inet_pton(3) indicates that the key is an IPv6 or IPv4 address or not, and

Linux man-pages 6.8 2024-05-02 6

getent(1) General Commands Manual getent(1)

display the result.

initgroups
When one or more key arguments are provided, pass each key in succession to
getgrouplist(3) and display the result. Enumeration is not supported on init-
groups, so a key must be provided.

netgroup
When one key is provided, pass the key to setnetgrent(3) and, using
getnetgrent(3) display the resulting string triple (hostname, username, domain-
name). Alternatively, three keys may be provided, which are interpreted as the
hostname, username, and domainname to match to a netgroup name via
innetgr(3). Enumeration is not supported on netgroup, so either one or three
keys must be provided.

networks
When no key is provided, use setnetent(3), getnetent(3), and endnetent(3) to enu-
merate the networks database. When one or more key arguments are provided,
pass each numeric key to getnetbyaddr(3) and each nonnumeric key to
getnetbyname(3) and display the result.

passwd
When no key is provided, use setpwent(3), getpwent(3), and endpwent(3) to enu-
merate the passwd database. When one or more key arguments are provided,
pass each numeric key to getpwuid(3) and each nonnumeric key to getpwnam(3)
and display the result.

protocols
When no key is provided, use setprotoent(3), getprotoent(3), and endprotoent(3)
to enumerate the protocols database. When one or more key arguments are pro-
vided, pass each numeric key to getprotobynumber(3) and each nonnumeric key
to getprotobyname(3) and display the result.

rpc When no key is provided, use setrpcent(3), getrpcent(3), and endrpcent(3) to
enumerate the rpc database. When one or more key arguments are provided,
pass each numeric key to getrpcbynumber(3) and each nonnumeric key to
getrpcbyname(3) and display the result.

services
When no key is provided, use setservent(3), getservent(3), and endservent(3) to
enumerate the services database. When one or more key arguments are provided,
pass each numeric key to getservbynumber(3) and each nonnumeric key to
getservbyname(3) and display the result.

shadow
When no key is provided, use setspent(3), getspent(3), and endspent(3) to enu-
merate the shadow database. When one or more key arguments are provided,
pass each key in succession to getspnam(3) and display the result.

OPTIONS
—=service service
—S service
Override all databases with the specified service. (Since glibc 2.2.5.)

Linux man-pages 6.8 2024-05-02 7

getent(1) General Commands Manual getent(1)

—=—service database:service

—s database:service
Override only specified databases with the specified service. The option may be
used multiple times, but only the last service for each database will be used.
(Since glibc 2.4.)

——no-idn
=i Disables IDN encoding in lookups for ahosts/getaddrinfo(3) (Since glibc-2.13.)

——help
-? Print a usage summary and exit.

——usage
Print a short usage summary and exit.

——Version
-V Print the version number, license, and disclaimer of warranty for getent.

EXIT STATUS
One of the following exit values can be returned by getent:

0 Command completed successfully.

1 Missing arguments, or database unknown.

2 One or more supplied key could not be found in the database.
3

Enumeration not supported on this database.

SEE ALSO
nsswitch.conf(5)

Linux man-pages 6.8 2024-05-02 8

iconv(l)

NAME

iconv —

SYNOPSI

General Commands Manual iconv(l)

convert text from one character encoding to another

S

iconv [options] [-f from-encoding] [t to-encoding] [inputfile]...

DESCRIPTION
The iconv program reads in text in one encoding and outputs the text in another encod-

ing. If

no input files are given, or if it is given as a dash (-), iconv reads from standard

input. If no output file is given, iconv writes to standard output.

If no from-encoding is given, the default is derived from the current locale’s character
encoding. If no to-encoding is given, the default is derived from the current locale’s
character encoding.

OPTIONS
——from—-code= from-encoding
—f from-encoding

——to—C

Use from-encoding for input characters.

ode=to-encoding

—t to-encoding

Use to-encoding for output characters.

If the string //IGNORE is appended to to-encoding, characters that cannot be
converted are discarded and an error is printed after conversion.

If the string /TRANSLIT is appended to to-encoding, characters being con-
verted are transliterated when needed and possible. This means that when a
character cannot be represented in the target character set, it can be approxi-
mated through one or several similar looking characters. Characters that are out-
side of the target character set and cannot be transliterated are replaced with a
question mark (?) in the output.

List all known character set encodings.

Silently discard characters that cannot be converted instead of terminating when
encountering such characters.

——output=outputfile
—0 outputfile

Use outpultfile for output.

——silent

—S

This option is ignored; it is provided only for compatibility.

——verbose

——help
-?

Print progress information on standard error when processing multiple files.

Print a usage summary and exit.

——usage

Print a short usage summary and exit.

Linux man-pages 6.8 2024-05-02 9

iconv(l)

General Commands Manual iconv(l)

——version

-V

Print the version number, license, and disclaimer of warranty for iconv.

EXIT STATUS
Zero on success, NONZEro on errors.

ENVIRONMENT
Internally, the iconv program uses the iconv(3) function which in turn uses gconv mod-
ules (dynamically loaded shared libraries) to convert to and from a character set. Before

call

ing iconv(3), the iconv program must first allocate a conversion descriptor using

iconv_open(3). The operation of the latter function is influenced by the setting of the
GCONV_PATH environment variable:

FILES

If GCONV_PATH is not set, iconv_open(3) loads the system gconv module config-
uration cache file created by iconvconfig(8) and then, based on the configuration,
loads the gconv modules needed to perform the conversion. If the system gconv
module configuration cache file is not available then the system gconv module con-
figuration file is used.

If GCONV_PATH is defined (as a colon-separated list of pathnames), the system
gconv module configuration cache is not used. Instead, iconv_open(3) first tries to
load the configuration files by searching the directories in GCONV_PATH in order,
followed by the system default gconv module configuration file. If a directory does
not contain a gconv module configuration file, any gconv modules that it may con-
tain are ignored. If a directory contains a gconv module configuration file and it is
determined that a module needed for this conversion is available in the directory,
then the needed module is loaded from that directory, the order being such that the
first suitable module found in GCONV_PATH is used. This allows users to use
custom modules and even replace system-provided modules by providing such mod-
ules in GCONV_PATH directories.

{usr/lib/gconv

Usual default gconv module path.

lusr/lib/gconv/gconv—modules

Usual system default gconv module configuration file.

{usr/lib/gconv/gconv—modules.cache

Usual system gconv module configuration cache.

Depending on the architecture, the above files may instead be located at directories with

the

path prefix /usr/lib64.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
Convert text from the ISO/IEC 8859-15 character encoding to UTF-8:

$ iconv —f 1S0-8859-15 -t UTF-8 < input.txt > output.txt

The next example converts from UTF-8 to ASCI|, transliterating when possible:

Linux man-pages 6.8 2024-05-02 10

iconv(l) General Commands Manual iconv(l)

$ echo abc B a € ab¢c | iconv —F UTF-8 -t ASCII//TRANSLIT
abc ss ? EUR abc

SEE ALSO
locale(1), uconv(1), iconv(3), nl_langinfo(3), charsets(7), iconvconfig(8)

Linux man-pages 6.8 2024-05-02 11

Idd (1) General Commands Manual ldd(1)

NAME
Idd — print shared object dependencies

SYNOPSIS
Idd [option]... file...

DESCRIPTION
Idd prints the shared objects (shared libraries) required by each program or shared ob-
ject specified on the command line. An example of its use and output is the following:

$ Idd /bin/lIs
linux-vdso.so.1 (0x00007ffcc3563000)
libselinux.so.1l => /lib64/1libselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /1ib64/1libcap.so.2 (0x00007f87e5254000)
libc.so.6 => /l1ib64/libc.so.6 (0x00007f87e4e92000)
libpcre.so.1 => /l1ib64/libpcre.so.1 (0x00007f87e4c22000)
libdl.so.2 => /l1ib64/1ibdl.so.2 (0x00007f87e4ale000)
/1ib64/1d-1i1nux—x86-64.s0.2 (0x00005574b¥12e000)
libattr.so.1l => /lib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /1ib64/1ibpthread.so.0 (0x00007f87e45fa000)

In the usual case, ldd invokes the standard dynamic linker (see Id.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the dy-
namic linker to inspect the program’s dynamic dependencies, and find (according to the
rules described in Id.so(8)) and load the objects that satisfy those dependencies. For
each dependency, Idd displays the location of the matching object and the (hexadecimal)
address at which it is loaded. (The linux—vdso and Id—linux shared dependencies are
special; see vdso(7) and 1d.so(8).)

Security

Be aware that in some circumstances (e.g., where the program specifies an ELF inter-
preter other than ld—linux.so), some versions of Idd may attempt to obtain the depen-
dency information by attempting to directly execute the program, which may lead to the
execution of whatever code is defined in the program’s ELF interpreter, and perhaps to
execution of the program itself. (Before glibc 2.27, the upstream Idd implementation
did this for example, although most distributions provided a modified version that did
not.)

Thus, you should never employ Idd on an untrusted executable, since this may result in
the execution of arbitrary code. A safer alternative when dealing with untrusted exe-
cutables is:

$ objdump -p /path/to/program | grep NEEDED

Note, however, that this alternative shows only the direct dependencies of the exe-
cutable, while 1dd shows the entire dependency tree of the executable.

OPTIONS
——version
Print the version number of Idd.

——verbose

Linux man-pages 6.8 2024-05-02 12

Idd (1) General Commands Manual ldd(1)

-V Print all information, including, for example, symbol versioning information.

——unused
-u Print unused direct dependencies. (Since glibc 2.3.4.)

——data-relocs
-d Perform relocations and report any missing objects (ELF only).

——function-relocs
-r Perform relocations for both data objects and functions, and report any missing
objects or functions (ELF only).

——help
Usage information.

BUGS

Idd does not work on a.out shared libraries.

Idd does not work with some extremely old a.out programs which were built before ldd
support was added to the compiler releases. If you use Idd on one of these programs,
the program will attempt to run with argc = 0 and the results will be unpredictable.

SEE ALSO
pldd(1), sprof(1), Id.so(8), Idconfig(8)

Linux man-pages 6.8 2024-05-02 13

locale(1) General Commands Manual locale(1)

NAME
locale — get locale-specific information
SYNOPSIS

locale [option]

locale [option] -a
locale [option] -m
locale [option] name...

DESCRIPTION
The locale command displays information about the current locale, or all locales, on
standard output.

When invoked without arguments, locale displays the current locale settings for each lo-
cale category (see locale(5)), based on the settings of the environment variables that
control the locale (see locale(7)). Values for variables set in the environment are printed
without double quotes, implied values are printed with double quotes.

If either the —a or the —m option (or one of their long-format equivalents) is specified,
the behavior is as follows:

—-all-locales
-a Display a list of all available locales. The —v option causes the LC_IDENTIFI-
CATION metadata about each locale to be included in the output.

——charmaps
-m Display the available charmaps (character set description files). To display the
current character set for the locale, use locale —c charmap.

The locale command can also be provided with one or more arguments, which are the
names of locale keywords (for example, date_fmt, ctype—class—names, yesexpr, or dec-
imal_point) or locale categories (for example, LC_CTYPE or LC_TIME). For each
argument, the following is displayed:

» For a locale keyword, the value of that keyword to be displayed.
» For alocale category, the values of all keywords in that category are displayed.
When arguments are supplied, the following options are meaningful:

——category—name
—C For a category name argument, write the name of the locale category on a sepa-
rate line preceding the list of keyword values for that category.

For a keyword name argument, write the name of the locale category for this
keyword on a separate line preceding the keyword value.

This option improves readability when multiple name arguments are specified. It
can be combined with the —k option.

——keyword—-name
-k For each keyword whose value is being displayed, include also the name of that
keyword, so that the output has the format:

keyword=""value"

The locale command also knows about the following options:

Linux man-pages 6.8 2024-05-02 14

locale(1) General Commands Manual

——verbose

locale(1)

-V Display additional information for some command-line option and argument

combinations.

——help

-? Display a summary of command-line options and arguments and exit.

——usage
Display a short usage message and exit.

—=Vversion
-V Display the program version and exit.

FILES
{usr/lib/locale/locale—archive
Usual default locale archive location.

lusr/share/il8n/locales
Usual default path for locale definition files.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
$ locale
LANG=en_US.UTF-8
LC CTYPE="en US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_ US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY=""en_US.UTF-8"
LC_MESSAGES="'en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME=""en_US.UTF-8"
LC_ADDRESS="'en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="'en_US.UTF-8"
LC _IDENTIFICATION="en_US.UTF-8"
LC_ALL=

$ locale date fmt
%a %b %e %H:%M:%S %Z %Y

$ locale -k date_fmt
date_fmt="%a %b %e %H:%M:%S %Z %Y

$ locale -ck date_fmt

LC_TIME
date_fmt=""%a %b %e %H:%M:%S %Z %Y

Linux man-pages 6.8 2024-05-02

15

locale(1) General Commands Manual locale(1)

$ locale LC_TELEPHONE
+0%c (%a) %l

%a) %l

11

1

UTF-8

$ locale -k LC_TELEPHONE
tel _int_fmt="+%c (%a) %Il"
tel_dom_fmt="(%a) %I"
int_select="11"
int_prefix="1"
telephone-codeset="UTF-8"

The following example compiles a custom locale from the ./wrk directory with the
localedef(1) utility under the $HOME/.locale directory, then tests the result with the
date(1) command, and then sets the environment variables LOCPATH and LANG in
the shell profile file so that the custom locale will be used in the subsequent user ses-
sions:

$ mkdir -p $HOME/.locale

$ 118NPATH=./wrk/ localedef -f UTF-8 -i fi_SE $HOME/.locale/fi_SE_UTF
$ LOCPATH=$HOME/.locale LC ALL=Fi_SE.UTF-8 date

$ echo "export LOCPATH=\$HOME/.locale"™ >> $HOME/.bashrc

$ echo "export LANG=Fi_SE.UTF-8" >> $HOME/ .bashrc

SEE ALSO
localedef(1), charmap(5), locale(5), locale(7)

Linux man-pages 6.8 2024-05-02 16

localedef (1) General Commands Manual localedef (1)

NAME
localedef — compile locale definition files

SYNOPSIS
localedef [options] outputpath
localedef ——add-to—archive [options] compiledpath
localedef ——delete—from—archive [options] localename ...
localedef ——list—archive [options]
localedef ——help
localedef ——usage
localedef ——version

DESCRIPTION
The localedef program reads the indicated charmap and input files, compiles them to a
binary form quickly usable by the locale functions in the C library (setlocale(3),
localeconv(3), etc.), and places the output in outputpath.

The outputpath argument is interpreted as follows:

» If outputpath contains a slash character (’/’), it is interpreted as the name of the di-
rectory where the output definitions are to be stored. In this case, there is a separate
output file for each locale category (LC_TIME, LC_NUMERIC, and so on).

» If the ——no-archive option is used, outputpath is the name of a subdirectory in
lusr/lib/locale where per-category compiled files are placed.

» Otherwise, outputpath is the name of a locale and the compiled locale data is added
to the archive file /usr/lib/locale/locale—archive. A locale archive is a memory-
mapped file which contains all the system-provided locales; it is used by all local-
ized programs when the environment variable LOCPATH is not set.

In any case, localedef aborts if the directory in which it tries to write locale files has not
already been created.

If no charmapfile is given, the value ANSI_X3.4—1968 (for ASCII) is used by default.
If no inputfile is given, or if it is given as a dash (=), localedef reads from standard in-
put.

OPTIONS
Operation-selection options
A few options direct localedef to do something other than compile locale definitions.
Only one of these options should be used at a time.

——add-to—archive
Add the compiledpath directories to the locale archive file. The directories
should have been created by previous runs of localedef, using --no-archive.

——delete—from-archive
Delete the named locales from the locale archive file.

——list—archive
List the locales contained in the locale archive file.

Other options
Some of the following options are sensible only for certain operations; generally, it
should be self-evident which ones. Notice that —f and —c are reversed from what you

Linux man-pages 6.8 2024-05-02 17

localedef (1) General Commands Manual localedef (1)

might expect; that is, —f is not the same as --force.

—f charmapfile, ——charmap=charmapfile
Specify the file that defines the character set that is used by the input file. If
charmapfile contains a slash character (’/*), it is interpreted as the name of the
character map. Otherwise, the file is sought in the current directory and the de-
fault directory for character maps. If the environment variable 118NPATH is set,
$118NPATH/charmaps/ and $118NPATH/ are also searched after the current di-
rectory. The default directory for character maps is printed by localedef --help.

=i inputfile, ——inputfile=inputfile
Specify the locale definition file to compile. The file is sought in the current di-
rectory and the default directory for locale definition files. If the environment
variable I18NPATH is set, $I118NPATH/locales/ and $I118NPATH are also
searched after the current directory. The default directory for locale definition
files is printed by localedef --help.

—u repertoirefile, ——repertoire—map=repertoirefile

Read mappings from symbolic names to Unicode code points from repertoire-
file. If repertoirefile contains a slash character (°/), it is interpreted as the path-
name of the repertoire map. Otherwise, the file is sought in the current directory
and the default directory for repertoire maps. If the environment variable
I18NPATH is set, $I118NPATH/repertoiremaps/ and $I18NPATH are also
searched after the current directory. The default directory for repertoire maps is
printed by localedef --help.

—A aliasfile, ——alias—file=aliasfile
Use aliasfile to look up aliases for locale names. There is no default aliases file.

——force
—C Write the output files even if warnings were generated about the input file.

—-verbose
-V Generate extra warnings about errors that are normally ignored.

——big—endian
Generate big-endian output.

——little-endian
Generate little-endian output.

—-no-archive
Do not use the locale archive file, instead create outputpath as a subdirectory in
the same directory as the locale archive file, and create separate output files for
locale categories in it. This is helpful to prevent system locale archive updates
from overwriting custom locales created with localedef.

——no—hard-links
Do not create hard links between installed locales.

——no-warnings=warnings
Comma-separated list of warnings to disable. Supported warnings are ascii and
intcurrsym.

Linux man-pages 6.8 2024-05-02 18

localedef (1) General Commands Manual localedef (1)

——posix
Conform strictly to POSIX. Implies --verbose. This option currently has no
other effect. POSIX conformance is assumed if the environment variable
POSIXLY_CORRECT is set.

——prefix=pathname
Set the prefix to be prepended to the full archive pathname. By default, the pre-
fix i1s empty. Setting the prefix to foo, the archive would be placed in
foo/usr/lib/locale/locale—archive.

——quiet
Suppress all notifications and warnings, and report only fatal errors.

—-replace
Replace a locale in the locale archive file. Without this option, if the locale is in
the archive file already, an error occurs.

——warnings=warnings
Comma-separated list of warnings to enable. Supported warnings are ascii and
intcurrsym.

——help
-? Print a usage summary and exit. Also prints the default paths used by localedef.

——usage
Print a short usage summary and exit.

—=version
-V Print the version number, license, and disclaimer of warranty for localedef.

EXIT STATUS
One of the following exit values can be returned by localedef:

0 Command completed successfully.
1 Warnings or errors occurred, output files were written.

4 Errors encountered, no output created.

ENVIRONMENT
POSIXLY_CORRECT
The ——posix flag is assumed if this environment variable is set.

I118NPATH
A colon-separated list of search directories for files.

FILES
lusr/share/il8n/charmaps
Usual default character map path.

lusr/share/il8n/locales
Usual default path for locale definition files.

/usr/share/il8n/repertoiremaps
Usual default repertoire map path.

{usr/lib/locale/locale—archive
Usual default locale archive location.

Linux man-pages 6.8 2024-05-02 19

localedef (1) General Commands Manual localedef (1)

lusr/lib/locale
Usual default path for compiled individual locale data files.

outputpath/LC_ADDRESS
An output file that contains information about formatting of addresses and geog-
raphy-related items.

outputpath/LC_COLLATE
An output file that contains information about the rules for comparing strings.

outputpath/LC_CTYPE
An output file that contains information about character classes.

outputpath/LC_IDENTIFICATION
An output file that contains metadata about the locale.

outputpath/LC_MEASUREMENT
An output file that contains information about locale measurements (metric ver-
sus US customary).

outputpath/LC_MESSAGES/SYS_LC_MESSAGES
An output file that contains information about the language messages should be
printed in, and what an affirmative or negative answer looks like.

outputpath/LC_MONETARY
An output file that contains information about formatting of monetary values.

outputpath/LC_NAME
An output file that contains information about salutations for persons.

outputpath/LC_NUMERIC
An output file that contains information about formatting of nonmonetary nu-
meric values.

outputpath/LC_PAPER
An output file that contains information about settings related to standard paper
size.

outputpath/LC_TELEPHONE
An output file that contains information about formats to be used with telephone
services.

outputpath/LC_TIME
An output file that contains information about formatting of data and time val-
ues.

STANDARDS
POSIX.1-2008.

EXAMPLES
Compile the locale files for Finnish in the UTF-8 character set and add it to the default
locale archive with the name fi_FI.UTF-8:

localedef -f UTF-8 -1 fi_FI1 fi_FI_.UTF-8

The next example does the same thing, but generates files into the fi_FI.UTF—8 direc-
tory which can then be used by programs when the environment variable LOCPATH is
set to the current directory (note that the last argument must contain a slash):

Linux man-pages 6.8 2024-05-02 20

localedef (1) General Commands Manual localedef (1)

localedef -f UTF-8 -1 fi_F1 _./fi1i_FI._UTF-8

SEE ALSO
locale(1), charmap(5), locale(5), repertoiremap(5), locale(7)

Linux man-pages 6.8 2024-05-02 21

memusage(1) General Commands Manual memusage(1)

NAME

memusage — profile memory usage of a program
SYNOPSIS

memusage [option]... program [programoption]...
DESCRIPTION

memusage is a bash script which profiles memory usage of the program, program. It
preloads the libmemusage.so library into the caller’s environment (via the LD_PRE-
LOAD environment variable; see Id.so(8)). The libmemusage.so library traces memory
allocation by intercepting calls to malloc(3), calloc(3), free(3), and realloc(3); option-
ally, calls to mmap(2), mremap(2), and munmap(2) can also be intercepted.

memusage can output the collected data in textual form, or it can use memusagestat(1)
(see the —p option, below) to create a PNG file containing graphical representation of
the collected data.

Memory usage summary
The "Memory usage summary" line output by memusage contains three fields:

heap total
Sum of size arguments of all malloc(3) calls, products of arguments
(nmemb*size) of all calloc(3) calls, and sum of length arguments of all
mmap(2) calls. In the case of realloc(3) and mremap(2), if the new size of
an allocation is larger than the previous size, the sum of all such differences
(new size minus old size) is added.

heap peak
Maximum of all size arguments of malloc(3), all products of nmemb*size of
calloc(3), all size arguments of realloc(3), length arguments of mmap(2),
and new_size arguments of mremap(2).

stack peak
Before the first call to any monitored function, the stack pointer address
(base stack pointer) is saved. After each function call, the actual stack
pointer address is read and the difference from the base stack pointer com-
puted. The maximum of these differences is then the stack peak.

Immediately following this summary line, a table shows the number calls, total memory
allocated or deallocated, and number of failed calls for each intercepted function. For
realloc(3) and mremap(2), the additional field "nomove" shows reallocations that
changed the address of a block, and the additional "dec™ field shows reallocations that
decreased the size of the block. For realloc(3), the additional field "free" shows reallo-
cations that caused a block to be freed (i.e., the reallocated size was 0).

The "realloc/total memory" of the table output by memusage does not reflect cases
where realloc(3) is used to reallocate a block of memory to have a smaller size than pre-
viously. This can cause sum of all "total memory" cells (excluding "free") to be larger
than the "free/total memory" cell.

Histogram for block sizes
The "Histogram for block sizes™ provides a breakdown of memory allocations into vari-
ous bucket sizes.

Linux man-pages 6.8 2024-05-02 22

memusage(1) General Commands Manual memusage(1)

OPTIONS
—N name, ——progname=name
Name of the program file to profile.
-p file, ——png=file
Generate PNG graphic and store it in file.
—d file, ——data=file
Generate binary data file and store it in file.

—-u, ——unbuffered
Do not buffer output.

—b size, ——buffer=size

Collect size entries before writing them out.
——no-timer

Disable timer-based (SIGPROF) sampling of stack pointer value.
—-m, ——mmap

Also trace mmap(2), mremap(2), and munmap(2).

-?, —help
Print help and exit.

——usage
Print a short usage message and exit.

-V, ——version
Print version information and exit.

The following options apply only when generating graphical output:
-t, ——time—based
Use time (rather than number of function calls) as the scale for the X axis.

-T, ——total
Also draw a graph of total memory use.

——title=name

Use name as the title of the graph.
—X Size, ——X—size=size

Make the graph size pixels wide.
-y size, ——y-size=size

Make the graph size pixels high.

EXIT STATUS
The exit status of memusage is equal to the exit status of the profiled program.

BUGS

To report bugs, see http://www.gnu.org/software/libc/bugs.html

EXAMPLES
Below is a simple program that reallocates a block of memory in cycles that rise to a
peak before then cyclically reallocating the memory in smaller blocks that return to
zero. After compiling the program and running the following commands, a graph of the
memory usage of the program can be found in the file memusage.png:

Linux man-pages 6.8 2024-05-02 23

http://www.gnu.org/software/libc/bugs.html

memusage(1)

General Commands Manual

$ memusage --data=memusage.dat ./a.out

Memory usage summary: heap total:

45200, heap

memusage(1)

peak: 6440, stack pe

total calls total memory Tailed calls

malloc]| 1 400
realloc| 40 44800
calloc]| 0 0
free| 1 440
Histogram for block sizes:

192-207 1 2V ===========—=—====
2192-2207 1 2 ================
2240-2255 2 4Y ========—=====—===
2832-2847 2 4% ================
3440-3455 2 4Y ================
4032-4047 2 4% ================
4640-4655 2 A% =========—======—=
5232-5247 2 4% ================
5840-5855 2 4% ================
6432-6447 1 2% ================

$ memusagestat memusage.dat memusage.png

Program source
#include <stdio.h>
#include <stdlib.h>

#define CYCLES 20

int
main(int argc, char *argv[])

{

t

n , j
ize ts
nt *p;

- () =

size = sizeof(*p) * 100;
printf('malloc: %zu\n",
p = malloc(size);

O; i < CYCLES;
CYCLES 7/ 2)

for (
i

I A

size
printf('realloc:

Linux man-pages 6.8

2024-05-02

size);

i++) {

sizeof(*p) * (J * 50 + 110);
%zu\n', size);
p = realloc(p, size);

0
0 (nomove:40, dec:19

24

memusage(1) General Commands Manual memusage(1)

size = sizeof(*p) * (g + 1) * 150 + 110);
printf("'realloc: %zu\n', size);
p = realloc(p, size);

}
free(p);
ex1t(EXIT_SUCCESS);
}
SEE ALSO

memusagestat(1), mtrace(1), 1d.so(8)

Linux man-pages 6.8 2024-05-02 25

memusagestat(1) General Commands Manual memusagestat(1)

NAME
memusagestat — generate graphic from memory profiling data

SYNOPSIS

memusagestat [option]... datafile [outfile]

DESCRIPTION
memusagestat creates a PNG file containing a graphical representation of the memory
profiling data in the file datafile; that file is generated via the —d (or ——data) option of
memusage(1).
The red line in the graph shows the heap usage (allocated memory) and the green line
shows the stack usage. The x-scale is either the number of memory-handling function
calls or (if the —t option is specified) time.
OPTIONS
-0 file, ——output=file
Name of the output file.
—s string, ——string=string
Use string as the title inside the output graph.

-t, ——time
Use time (rather than number of function calls) as the scale for the X axis.
-T, ——total

Also draw a graph of total memory consumption.
—X Size, ——X—size=size

Make the output graph size pixels wide.
-y size, ——y-size=size

Make the output graph size pixels high.

-?, ——help
Print a help message and exit.

——usage
Print a short usage message and exit.

-V, ——version
Print version information and exit.

BUGS

To report bugs, see http://www.gnu.org/software/libc/bugs.html

EXAMPLES
See memusage(1).

SEE ALSO

memusage(1), mtrace(1)

Linux man-pages 6.8 2024-05-02 26

http://www.gnu.org/software/libc/bugs.html

mtrace(1) General Commands Manual mtrace(1)

NAME

mtrace — interpret the malloc trace log
SYNOPSIS

mtrace [option]... [binary] mtracedata
DESCRIPTION

mtrace is a Perl script used to interpret and provide human readable output of the trace
log contained in the file mtracedata, whose contents were produced by mtrace(3). If bi-
nary is provided, the output of mtrace also contains the source file name with line num-
ber information for problem locations (assuming that binary was compiled with debug-
ging information).

For more information about the mtrace(3) function and mtrace script usage, see
mtrace(3).

OPTIONS
——help
Print help and exit.

——Vversion
Print version information and exit.

BUGS

For bug reporting instructions, please see: http://www.gnu.org/software/libc/bugs.html.

SEE ALSO

memusage(1), mtrace(3)

Linux man-pages 6.8 2024-05-02 27

http://www.gnu.org/software/libc/bugs.html

pldd(1) General Commands Manual pldd(1)

NAME
pldd - display dynamic shared objects linked into a process

SYNOPSIS
pldd pid
pldd option

DESCRIPTION
The pldd command displays a list of the dynamic shared objects (DSOs) that are linked
into the process with the specified process ID (PID). The list includes the libraries that
have been dynamically loaded using dlopen(3).

OPTIONS
——help
-? Display a help message and exit.

——usage
Display a short usage message and exit.

—=version
-V Display program version information and exit.

EXIT STATUS
On success, pldd exits with the status 0. If the specified process does not exist, the user
does not have permission to access its dynamic shared object list, or no command-line
arguments are supplied, pldd exists with a status of 1. If given an invalid option, it exits
with the status 64.

VERSIONS
Some other systems have a similar command.

STANDARDS
None.

HISTORY
glibc 2.15.

NOTES
The command

Isof -p PID

also shows output that includes the dynamic shared objects that are linked into a
process.

The gdb(1) info shared command also shows the shared libraries being used by a
process, so that one can obtain similar output to pldd using a command such as the fol-
lowing (to monitor the process with the specified pid):

$ gdb -ex "'set confirm off" -ex '"set height 0" -ex "info shared" \
-ex "'quit" -p $pid | grep "~Ox.*0x"

BUGS
From glibc 2.19 to glibc 2.29, pldd was broken: it just hung when executed. This prob-
lem was fixed in glibc 2.30, and the fix has been backported to earlier glibc versions in
some distributions.

Linux man-pages 6.8 2024-05-02 28

pldd(1) General Commands Manual pldd(1)

EXAMPLES
$ echo $$ # Display PID of shell
1143
$ pldd 3 # Display DSOs linked into the shell

1143: /usr/bin/bash
linux-vdso.so.1
/1i1b64/1ibtinfo.so0.5
/1ib64/1ibdl.so.2
/1ib64/1libc.so0.6
/1ib64/1d-1inux—x86-64.s0.2
/1ib64/libnss_files.so.2

SEE ALSO
Idd(1), Isof (1), dlopen(3), Id.so(8)

Linux man-pages 6.8 2024-05-02 29

sprof (1) General Commands Manual sprof (1)

NAME
sprof — read and display shared object profiling data

SYNOPSIS
sprof [option]... shared-object-path [profile-data-path]

DESCRIPTION
The sprof command displays a profiling summary for the shared object (shared library)
specified as its first command-line argument. The profiling summary is created using
previously generated profiling data in the (optional) second command-line argument. If
the profiling data pathname is omitted, then sprof will attempt to deduce it using the
soname of the shared object, looking for a file with the name <soname>.profile in the
current directory.

OPTIONS
The following command-line options specify the profile output to be produced:

——call-pairs
-C Print a list of pairs of call paths for the interfaces exported by the shared object,
along with the number of times each path is used.

——flat—profile

-p Generate a flat profile of all of the functions in the monitored object, with counts
and ticks.

——graph

—q Generate a call graph.

If none of the above options is specified, then the default behavior is to display a flat
profile and a call graph.

The following additional command-line options are available:

——help
-? Display a summary of command-line options and arguments and exit.

——usage
Display a short usage message and exit.

—=Vversion
-V Display the program version and exit.

STANDARDS
GNU.

EXAMPLES
The following example demonstrates the use of sprof. The example consists of a main
program that calls two functions in a shared object. First, the code of the main program:

$ cat prog.c
#include <stdlib.h>

void x1(void);
void x2(void);

int
main(int argc, char *argv[])

Linux man-pages 6.8 2024-05-02 30

sprof (1) General Commands Manual sprof (1)

{
x1Q0);
x2Q);
exit(EXIT_SUCCESS);
}

The functions x1() and x2() are defined in the following source file that is used to con-
struct the shared object:

$ cat libdemo.c
#include <unistd.h>

void
consumeCpul(int 1im)

{

N

0; 3 lim; j++)

for (unsigned int j
getppid();
+

void
x1(void) {
for (unsigned int j = 0; j 100; j++)
consumeCpul(200000);

AN

}

void
consumeCpu2(int 1im)

{

for (unsigned int j
getppid();

I
o
-
N

lim; j++)
s

void
x2(void)
{

N

for (unsigned int j
consumeCpu2(10000);

0; J < 1000; j++)

}

Now we construct the shared object with the real name libdemo.s0.1.0.1, and the son-
ame libdemo.so.1:

$ cc —-g —-fPIC -shared -WIl,-soname, libdemo.so.1 \
-0 libdemo.so0.1.0.1 libdemo.c

Then we construct symbolic links for the library soname and the library linker name:

$ In -sf libdemo.so0.1.0.1 libdemo.so.1
$ In —-st libdemo.so.1 libdemo.so

Next, we compile the main program, linking it against the shared object, and then list
the dynamic dependencies of the program:

Linux man-pages 6.8 2024-05-02 31

sprof (1) General Commands Manual sprof (1)

$ cc -g -0 prog prog.c -L. -ldemo

$ 1dd prog
linux-vdso.so.1l => (0Ox00007fff86d66000)
libdemo.so.1l => not found
libc.so.6 => /l1ib64/1libc.so.6 (0x00007fd4dc138000)
/1ib64/1d-11nux—x86-64.s0.2 (0x00007fd4dc51f000)

In order to get profiling information for the shared object, we define the environment
variable LD _PROFILE with the soname of the library:

$ export LD _PROFILE=libdemo.so.1

We then define the environment variable LD _PROFILE_OUTPUT with the pathname
of the directory where profile output should be written, and create that directory if it
does not exist already:

$ export LD _PROFILE_OUTPUT=$(pwd)/prof _data
$ mkdir —-p $LD_PROFILE_OUTPUT

LD_PROFILE causes profiling output to be appended to the output file if it already ex-
ists, so we ensure that there is no preexisting profiling data:

$ rm —f $LD_PROFILE_OUTPUT/$LD_PROFILE.profile

We then run the program to produce the profiling output, which is written to a file in the
directory specified in LD_PROFILE_OUTPUT:

$ LD_LIBRARY_PATH=. ./prog
$ Is prof_data
libdemo.so.l.profile

We then use the sprof —p option to generate a flat profile with counts and ticks:

$ sprof —p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls wus/call us/call name

60.00 0.06 0.06 100 600.00 consumeCpul
40.00 0.10 0.04 1000 40.00 consumeCpu?2
0.00 0.10 0.00 1 0.00 X1

0.00 0.10 0.00 1 0.00 X2

The sprof —qg option generates a call graph:

$ sprof —q libdemo.so.1l $LD_PROFILE_OUTPUT/libdemo.so.1.profile

index % time self children called name
0.00 0.00 1007100 x1 [1]

[0] 100.0 0.00 0.00 100 consumeCpul [O]
0.00 0.00 171 <UNKNOWN>

[1] 0.0 0.00 0.00 1 x1 [1]
0.00 0.00 1007100 consumeCpul [O]

Linux man-pages 6.8 2024-05-02

32

sprof (1) General Commands Manual

0.00 0.00 1000/1000
[2] 0.0 0.00 0.00 1000

0.00 0.00 1/1
[3] 0.0 0.00 0.00 1

0.00 0.00 1000/1000

sprof (1)

x2 [3]
consumeCpu2 [2]

<UNKNOWN>
x2 [3]
consumeCpu2 [2]

Above and below, the "<UNKNOWN>" strings represent identifiers that are outside of

the profiled object (in this example, these are instances of main()).

The sprof —c option generates a list of call pairs and the number of their occurrences:
$ sprof —-c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

<UNKNOWN> x1

x1 consumeCpul

<UNKNOWN> X2

X2 consumeCpu?2
SEE ALSO

gprof (1), Idd(1), Id.so(8)

Linux man-pages 6.8 2024-05-02

1
100
1
1000

33

time(1) General Commands Manual time(1)

NAME

time — time a simple command or give resource usage
SYNOPSIS

time [option ...] command [argument .. .]
DESCRIPTION

The time command runs the specified program command with the given arguments.
When command finishes, time writes a message to standard error giving timing statis-
tics about this program run. These statistics consist of (i) the elapsed real time between
invocation and termination, (ii) the user CPU time (the sum of the tms_utime and
tms_cutime values in a struct tms as returned by times(2)), and (iii) the system CPU time
(the sum of the tms_stime and tms_cstime values in a struct tms as returned by times(2)).

Note: some shells (e.g., bash(1)) have a built-in time command that provides similar in-
formation on the usage of time and possibly other resources. To access the real com-
mand, you may need to specify its pathname (something like /usr/bin/time).

OPTIONS
-p When in the POSIX locale, use the precise traditional format

"real %f\nuser %f\nsys %f\n"

(with numbers in seconds) where the number of decimals in the output for %f is
unspecified but is sufficient to express the clock tick accuracy, and at least one.

EXIT STATUS
If command was invoked, the exit status is that of command. Otherwise, it is 127 if
command could not be found, 126 if it could be found but could not be invoked, and
some other nonzero value (1-125) if something else went wrong.

ENVIRONMENT
The variables LANG, LC_ALL, LC _CTYPE, LC_MESSAGES, LC_NUMERIC,
and NLSPATH are used for the text and formatting of the output. PATH is used to
search for command.

GNU VERSION
Below a description of the GNU 1.7 version of time. Disregarding the name of the util-
ity, GNU makes it output lots of useful information, not only about time used, but also
on other resources like memory, 1/0 and IPC calls (where available). The output is for-
matted using a format string that can be specified using the —f option or the TIME envi-
ronment variable.

The default format string is:

%Uuser %Ssystem %Eelapsed %PCPU (%Xtext+%Ddata %Mmax)k
%1 inputs+%0outputs (UFmajor+%Rminor)pagefaults %Wswaps

When the —p option is given, the (portable) output format is used:

real %e
user %U
sys %S

The format string
The format is interpreted in the usual printf-like way. Ordinary characters are directly
copied, tab, newline, and backslash are escaped using \t, \n, and \\, a percent sign is

Linux man-pages 6.8 2024-05-02 34

time(1)

General Commands Manual time(1)

represented by %%, and otherwise % indicates a conversion. The program time will al-
ways add a trailing newline itself. The conversions follow. All of those used by tcsh(1)
are supported.

Time

%E Elapsed real time (in [hours:]minutes:seconds).

%e (Notin tcsh(1)Elapsed real time (in seconds).

%S Total number of CPU-seconds that the process spent in kernel mode.

%U Total number of CPU-seconds that the process spent in user mode.

%P Percentage of the CPU that this job got, computed as (%U + %S) / %E.

Memory

%M Maximum resident set size of the process during its lifetime, in Kbytes.

%t (Not in tcsh(1)Average resident set size of the process, in Kbytes.

%K Average total (data+stack+text) memory use of the process, in Kbytes.

%D Average size of the process’s unshared data area, in Kbytes.

%p (Notin tcsh(1)Average size of the process’s unshared stack space, in Kbytes.

%X Average size of the process’s shared text space, in Kbytes.

%Z (Not in tcsh(1)System’s page size, in bytes. This is a per-system constant, but
varies between systems.

%F Number of major page faults that occurred while the process was running.
These are faults where the page has to be read in from disk.

%R Number of minor, or recoverable, page faults. These are faults for pages that are
not valid but which have not yet been claimed by other virtual pages. Thus the
data in the page is still valid but the system tables must be updated.

%W Number of times the process was swapped out of main memory.

%c Number of times the process was context-switched involuntarily (because the
time slice expired).

%w Number of waits: times that the program was context-switched voluntarily, for
instance while waiting for an 1/0 operation to complete.

1/0

%I Number of filesystem inputs by the process.

%0 Number of filesystem outputs by the process.

%r Number of socket messages received by the process.

%s Number of socket messages sent by the process.

%k Number of signals delivered to the process.

%C (Not in tcsh(1)Name and command-line arguments of the command being timed.

%x (Not in tcsh(1)Exit status of the command.

Linux man-pages 6.8 2024-05-02 35

time(1) General Commands Manual time(1)

GNU options
—f format, ——format= format
Specify output format, possibly overriding the format specified in the environ-
ment variable TIME.

—p, ——portability
Use the portable output format.

-0 file, ——output=file
Do not send the results to stderr, but overwrite the specified file.

—-a, ——append

(Used together with —0.) Do not overwrite but append.
-V, ——verbose

Give very verbose output about all the program knows about.
—-Q, ——quiet

Don’t report abnormal program termination (where command is terminated by a
signal) or nonzero exit status.

GNU standard options

hGIIOPrint a usage message on standard output and exit successfully.
-V, ——version
Print version information on standard output, then exit successfully.
- Terminate option list.
BUGS

Not all resources are measured by all versions of UNIX, so some of the values might be
reported as zero. The present selection was mostly inspired by the data provided by 4.2
or 4.3BSD.

GNU time version 1.7 is not yet localized. Thus, it does not implement the POSIX re-
quirements.

The environment variable TIME was badly chosen. It is not unusual for systems like
autoconf (1) or make(1) to use environment variables with the name of a utility to over-
ride the utility to be used. Uses like MORE or TIME for options to programs (instead of
program pathnames) tend to lead to difficulties.

It seems unfortunate that —o overwrites instead of appends. (That is, the —a option
should be the default.)

Mail suggestions and bug reports for GNU time to bug—time@gnu.org. Please include
the version of time, which you can get by running

time —-version
and the operating system and C compiler you used.

SEE ALSO
bash(1), tcsh(1), times(2), wait3(2)

Linux man-pages 6.8 2024-05-02 36

intro(2) System Calls Manual intro(2)

NAME
intro — introduction to system calls
DESCRIPTION

Section 2 of the manual describes the Linux system calls. A system call is an entry
point into the Linux kernel. Usually, system calls are not invoked directly: instead, most
system calls have corresponding C library wrapper functions which perform the steps re-
quired (e.g., trapping to kernel mode) in order to invoke the system call. Thus, making a
system call looks the same as invoking a normal library function.

In many cases, the C library wrapper function does nothing more than:

e copying arguments and the unique system call number to the registers where the ker-
nel expects them;

» trapping to kernel mode, at which point the kernel does the real work of the system
call;

e setting errno if the system call returns an error number when the kernel returns the
CPU to user mode.

However, in a few cases, a wrapper function may do rather more than this, for example,
performing some preprocessing of the arguments before trapping to kernel mode, or
postprocessing of values returned by the system call. Where this is the case, the manual
pages in Section 2 generally try to note the details of both the (usually GNU) C library
API interface and the raw system call. Most commonly, the main DESCRIPTION will
focus on the C library interface, and differences for the system call are covered in the
NOTES section.

For a list of the Linux system calls, see syscalls(2).

RETURN VALUE
On error, most system calls return a negative error number (i.e., the negated value of one
of the constants described in errno(3)). The C library wrapper hides this detail from the
caller: when a system call returns a negative value, the wrapper copies the absolute value
into the errno variable, and returns —1 as the return value of the wrapper.

The value returned by a successful system call depends on the call. Many system calls
return 0 on success, but some can return nonzero values from a successful call. The de-
tails are described in the individual manual pages.

In some cases, the programmer must define a feature test macro in order to obtain the
declaration of a system call from the header file specified in the man page SYNOPSIS
section. (Where required, these feature test macros must be defined before including
any header files.) In such cases, the required macro is described in the man page. For
further information on feature test macros, see feature _test_macros(7).

STANDARDS
Certain terms and abbreviations are used to indicate UNIX variants and standards to
which calls in this section conform. See standards(7).

NOTES
Calling directly
In most cases, it is unnecessary to invoke a system call directly, but there are times when
the Standard C library does not implement a nice wrapper function for you. In this case,
the programmer must manually invoke the system call using syscall(2). Historically,

Linux man-pages 6.8 2024-05-02 37

intro(2) System Calls Manual intro(2)

this was also possible using one of the _syscall macros described in _syscall(2).

Authors and copyright conditions
Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

SEE ALSO
_syscall(2), syscall(2), syscalls(2), errno(3), intro(3), capabilities(7), credentials(7),
feature_test_macros(7), mqg_overview(7), path_resolution(7), pipe(7), pty(7),
sem_overview(7), shm_overview(7), signal(7), socket(7), standards(7), symlink(7),
system_data_types(7), sysvipc(7), time(7)

Linux man-pages 6.8 2024-05-02 38

accept(2) System Calls Manual accept(2)

NAME

accept, accept4 — accept a connection on a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *_Nullable restrict addr,
socklen_t * Nullable restrict addrlen);

#define _GNU_SOURCE [* See feature_test_macros(7) */
#include <sys/socket.h>

int accept4(int sockfd, struct sockaddr *_Nullable restrict addr,
socklen_t * Nullable restrict addrlen, int flags);

DESCRIPTION
The accept() system call is wused with connection-based socket types
(SOCK_STREAM, SOCK_SEQPACKET). It extracts the first connection request on
the queue of pending connections for the listening socket, sockfd, creates a new con-
nected socket, and returns a new file descriptor referring to that socket. The newly cre-
ated socket is not in the listening state. The original socket sockfd is unaffected by this
call.

The argument sockfd is a socket that has been created with socket(2), bound to a local
address with bind(2), and is listening for connections after a listen(2).

The argument addr is a pointer to a sockaddr structure. This structure is filled in with
the address of the peer socket, as known to the communications layer. The exact format
of the address returned addr is determined by the socket’s address family (see socket(2)
and the respective protocol man pages). When addr is NULL, nothing is filled in; in
this case, addrlen is not used, and should also be NULL.

The addrlen argument is a value-result argument: the caller must initialize it to contain
the size (in bytes) of the structure pointed to by addr; on return it will contain the actual
size of the peer address.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

If no pending connections are present on the queue, and the socket is not marked as non-
blocking, accept() blocks the caller until a connection is present. If the socket is marked
nonblocking and no pending connections are present on the queue, accept() fails with
the error EAGAIN or EWOULDBLOCK.

In order to be notified of incoming connections on a socket, you can use select(2),
poll(2), or epoll(7). A readable event will be delivered when a new connection is at-
tempted and you may then call accept() to get a socket for that connection. Alterna-
tively, you can set the socket to deliver SIGIO when activity occurs on a socket; see
socket(7) for details.

If flags is O, then accept4() is the same as accept(). The following values can be bit-
wise ORed in flags to obtain different behavior:

Linux man-pages 6.8 2024-05-02 39

accept(2) System Calls Manual accept(2)

SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file de-
scriptor. See the description of the O_CLOEXEC flag in open(2)
for reasons why this may be useful.

RETURN VALUE
On success, these system calls return a file descriptor for the accepted socket (a nonneg-
ative integer). On error, —1 is returned, errno is set to indicate the error, and addrlen is
left unchanged.

Error handling
Linux accept() (and accept4()) passes already-pending network errors on the new
socket as an error code from accept(). This behavior differs from other BSD socket im-
plementations. For reliable operation the application should detect the network errors
defined for the protocol after accept() and treat them like EAGAIN by retrying. In the
case of TCP/IP, these are ENETDOWN, EPROTO, ENOPROTOOPT, EHOST-
DOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP, and ENETUNREACH.

ERRORS
EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and no connections are present to be ac-
cepted. POSIX.1-2001 and POSIX.1-2008 allow either error to be returned for
this case, and do not require these constants to have the same value, so a portable
application should check for both possibilities.

EBADF
sockfd is not an open file descriptor.

ECONNABORTED
A connection has been aborted.

EFAULT
The addr argument is not in a writable part of the user address space.

EINTR
The system call was interrupted by a signal that was caught before a valid con-
nection arrived; see signal(7).

EINVAL
Socket is not listening for connections, or addrlen is invalid (e.g., is negative).

EINVAL
(accept4()) invalid value in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

Linux man-pages 6.8 2024-05-02 40

accept(2) System Calls Manual accept(2)

ENOBUFS

ENOMEM
Not enough free memory. This often means that the memory allocation is lim-
ited by the socket buffer limits, not by the system memory.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM.

EPERM
Firewall rules forbid connection.

EPROTO
Protocol error.

In addition, network errors for the new socket and as defined for the protocol may be re-
turned. Various Linux kernels can return other errors such as ENOSR, ESOCKTNO-
SUPPORT, EPROTONOSUPPORT, ETIMEDOUT. The value ERESTARTSYS
may be seen during a trace.

VERSIONS
On Linux, the new socket returned by accept() does not inherit file status flags such as
O_NONBLOCK and O_ASYNC from the listening socket. This behavior differs from
the canonical BSD sockets implementation. Portable programs should not rely on inher-
itance or noninheritance of file status flags and always explicitly set all required flags on
the socket returned from accept().

STANDARDS
accept()
POSIX.1-2008.

accept4()
Linux.

HISTORY

accept()
POSIX.1-2001, SVr4, 4.4BSD (accept() first appeared in 4.2BSD).

accept4()
Linux 2.6.28, glibc 2.10.

NOTES
There may not always be a connection waiting after a SIGIO is delivered or select(2),
poll(2), or epoll(7) return a readability event because the connection might have been re-
moved by an asynchronous network error or another thread before accept() is called. If
this happens, then the call will block waiting for the next connection to arrive. To en-
sure that accept() never blocks, the passed socket sockfd needs to have the O_NON-
BLOCK flag set (see socket(7)).

For certain protocols which require an explicit confirmation, such as DECnet, accept()
can be thought of as merely dequeuing the next connection request and not implying
confirmation. Confirmation can be implied by a normal read or write on the new file de-
scriptor, and rejection can be implied by closing the new socket. Currently, only DEC-
net has these semantics on Linux.

Linux man-pages 6.8 2024-05-02 41

accept(2) System Calls Manual accept(2)

The socklen_t type
In the original BSD sockets implementation (and on other older systems) the third argu-
ment of accept() was declared as an int *. A POSIX.1g draft standard wanted to change
it into a size_t *C; later POSIX standards and glibc 2.x have socklen_t * .

EXAMPLES
See bind(2).

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2), socket(7)

Linux man-pages 6.8 2024-05-02 42

access(2) System Calls Manual access(2)

NAME

access, faccessat, faccessat2 — check user’s permissions for a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int access(const char * pathname, int mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int faccessat(int dirfd, const char * pathname, int mode, int flags);
/* But see C library/kernel differences, below */

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_faccessat2,
int dirfd, const char * pathname, int mode, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

faccessat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION

access() checks whether the calling process can access the file pathname. If pathname
is a symbolic link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and is either the value
F_OK, or a mask consisting of the bitwise OR of one or more of R_OK, W_OK, and
X_OK. F_OK tests for the existence of the file. R_OK, W_OK, and X OK test
whether the file exists and grants read, write, and execute permissions, respectively.

The check is done using the calling process’s real UID and GID, rather than the effec-
tive IDs as is done when actually attempting an operation (e.g., open(2)) on the file.
Similarly, for the root user, the check uses the set of permitted capabilities rather than
the set of effective capabilities; and for non-root users, the check uses an empty set of
capabilities.

This allows set-user-1D programs and capability-endowed programs to easily determine
the invoking user’s authority. In other words, access() does not answer the "can |
read/write/execute this file?" question. It answers a slightly different question: "(assum-
ing I’m a setuid binary) can the user who invoked me read/write/execute this file?",
which gives set-user-1D programs the possibility to prevent malicious users from caus-
ing them to read files which users shouldn’t be able to read.

If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is
successful for a regular file if execute permission is enabled for any of the file owner,
group, or other.

Linux man-pages 6.8 2024-05-02 43

access(2) System Calls Manual access(2)

faccessat()
faccessat() operates in exactly the same way as access(), except for the differences de-
scribed here.

If the pathname given in pathname is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current working di-
rectory of the calling process, as is done by access() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like access())

If pathname is absolute, then dirfd is ignored.
flags is constructed by ORing together zero or more of the following values:

AT_EACCESS
Perform access checks using the effective user and group IDs. By default, fac-
cessat() uses the real IDs (like access())

AT_EMPTY_PATH (since Linux 5.8)
If pathname is an empty string, operate on the file referred to by dirfd (which
may have been obtained using the open(2) O_PATH flag). In this case, dirfd
can refer to any type of file, not just a directory. If dirfd is AT_FDCWD, the
call operates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return information
about the link itself.

See openat(2) for an explanation of the need for faccessat().

faccessat2()
The description of faccessat() given above corresponds to POSIX.1 and to the imple-
mentation provided by glibc. However, the glibc implementation was an imperfect emu-
lation (see BUGS) that papered over the fact that the raw Linux faccessat() system call
does not have a flags argument. To allow for a proper implementation, Linux 5.8 added
the faccessat2() system call, which supports the flags argument and allows a correct im-
plementation of the faccessat() wrapper function.

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the file exists),
zero is returned. On error (at least one bit in mode asked for a permission that is denied,
or mode is F_OK and the file does not exist, or some other error occurred), -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EACCES
The requested access would be denied to the file, or search permission is denied
for one of the directories in the path prefix of pathname. (See also
path_resolution(7).)

EBADF
(faccessat()) pathname is relative but dirfd is neither AT_FDCWD (faccessat())
nor a valid file descriptor.

Linux man-pages 6.8 2024-05-02 44

access(2) System Calls Manual access(2)

EFAULT
pathname points outside your accessible address space.

EINVAL
mode was incorrectly specified.

EINVAL
(faccessat()) Invalid flag specified in flags.

EIO An /O error occurred.

ELOOP

Too many symbolic links were encountered in resolving pathname.
ENAMETOOLONG

pathname is too long.
ENOENT

A component of pathname does not exist or is a dangling symbolic link.
ENOMEM

Insufficient kernel memory was available.
ENOTDIR

A component used as a directory in pathname is not, in fact, a directory.
ENOTDIR

(faccessat()) pathname is relative and dirfd is a file descriptor referring to a file
other than a directory.

EPERM
Write permission was requested to a file that has the immutable flag set. See
also ioctl_iflags(2).

EROFS
Write permission was requested for a file on a read-only filesystem.

ETXTBSY
Write access was requested to an executable which is being executed.

VERSIONS
If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 per-
mits an implementation to indicate success for an X_OK check even if none of the exe-
cute file permission bits are set. Linux does not do this.

C library/kernel differences
The raw faccessat() system call takes only the first three arguments. The AT_EAC-
CESS and AT_SYMLINK_NOFOLLOW flags are actually implemented within the
glibc wrapper function for faccessat(). If either of these flags is specified, then the
wrapper function employs fstatat(2) to determine access permissions, but see BUGS.

glibc notes
On older kernels where faccessat() is unavailable (and when the AT_EACCESS and
AT_SYMLINK_NOFOLLOW flags are not specified), the glibc wrapper function falls
back to the use of access(). When pathname is a relative pathname, glibc constructs a
pathname based on the symbolic link in /proc/self/fd that corresponds to the dirfd argu-
ment.

Linux man-pages 6.8 2024-05-02 45

access(2) System Calls Manual access(2)

STANDARDS

access()
faccessat()
POSIX.1-2008.

faccessat2()
Linux.

HISTORY

access()
SVvr4, 4.3BSD, POSIX.1-2001.

faccessat()
Linux 2.6.16, glibc 2.4.

faccessat2()
Linux 5.8.

NOTES

Warning: Using these calls to check if a user is authorized to, for example, open a file
before actually doing so using open(2) creates a security hole, because the user might
exploit the short time interval between checking and opening the file to manipulate it.
For this reason, the use of this system call should be avoided. (In the example just
described, a safer alternative would be to temporarily switch the process’s effective user
ID to the real ID and then call open(2).)

access() always dereferences symbolic links. If you need to check the permissions on a
symbolic link, use faccessat() with the flag AT_SYMLINK_NOFOLLOW.

These calls return an error if any of the access types in mode is denied, even if some of
the other access types in mode are permitted.

A file is accessible only if the permissions on each of the directories in the path prefix of
pathname grant search (i.e., execute) access. If any directory is inaccessible, then the
access() call fails, regardless of the permissions on the file itself.

Only access bits are checked, not the file type or contents. Therefore, if a directory is
found to be writable, it probably means that files can be created in the directory, and not
that the directory can be written as a file. Similarly, a DOS file may be reported as exe-
cutable, but the execve(2) call will still fail.

These calls may not work correctly on NFSv2 filesystems with UID mapping enabled,
because UID mapping is done on the server and hidden from the client, which checks
permissions. (NFS versions 3 and higher perform the check on the server.) Similar
problems can occur to FUSE mounts.

BUGS

Because the Linux kernel’s faccessat() system call does not support a flags argument,
the glibc faccessat() wrapper function provided in glibc 2.32 and earlier emulates the re-
quired functionality using a combination of the faccessat() system call and fstatat(2).
However, this emulation does not take ACLs into account. Starting with glibc 2.33, the
wrapper function avoids this bug by making use of the faccessat2() system call where it
is provided by the underlying kernel.

In Linux 2.4 (and earlier) there is some strangeness in the handling of X_OK tests for
superuser. If all categories of execute permission are disabled for a nondirectory file,

Linux man-pages 6.8 2024-05-02 46

access(2) System Calls Manual access(2)

then the only access() test that returns —1 is when mode is specified as just X_OK; if
R_OK or W_OK is also specified in mode, then access() returns 0 for such files. Early
Linux 2.6 (up to and including Linux 2.6.3) also behaved in the same way as Linux 2.4.

Before Linux 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was

used to mount(2) the underlying filesystem. Since Linux 2.6.20, the MS_NOEXEC flag
is honored.

SEE ALSO

chmod(2), chown(2), open(2), setgid(2), setuid(2), stat(2), euidaccess(3), credentials(7),
path_resolution(7), symlink(7)

Linux man-pages 6.8 2024-05-02 47

acct(2) System Calls Manual acct(2)

NAME

acct — switch process accounting on or off
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int acct(const char *_Nullable filename);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acct():
Since glibc 2.21:
_DEFAULT_SOURCE
In glibc 2.19 and 2.20:
_DEFAULT_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:
_BSD_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The acct() system call enables or disables process accounting. If called with the name
of an existing file as its argument, accounting is turned on, and records for each termi-
nating process are appended to filename as it terminates. An argument of NULL causes
accounting to be turned off.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES
Write permission is denied for the specified file, or search permission is denied
for one of the directories in the path prefix of filename (see also
path_resolution(7)), or filename is not a regular file.

EFAULT
filename points outside your accessible address space.

EIO Error writing to the file filename.

EISDIR
filename is a directory.

ELOOP
Too many symbolic links were encountered in resolving filename.

ENAMETOOLONG
filename was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The specified file does not exist.

Linux man-pages 6.8 2024-05-02 48

acct(2) System Calls Manual acct(2)

ENOMEM
Out of memory.

ENOSYS
BSD process accounting has not been enabled when the operating system kernel
was compiled. The kernel configuration parameter controlling this feature is
CONFIG_BSD_PROCESS_ACCT.

ENOTDIR
A component used as a directory in filename is not in fact a directory.

EPERM
The calling process has insufficient privilege to enable process accounting. On
Linux, the CAP_SYS_PACCT capability is required.

EROFS
filename refers to a file on a read-only filesystem.

EUSERS
There are no more free file structures or we ran out of memory.

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

NOTES

No accounting is produced for programs running when a system crash occurs. In partic-
ular, nonterminating processes are never accounted for.

The structure of the records written to the accounting file is described in acct(5).

SEE ALSO
acct(b)

Linux man-pages 6.8 2024-05-02 49

add_key(2) System Calls Manual add_key(2)

NAME

add_key — add a key to the kernel’s key management facility
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <keyutils.h>

key serial_t add_key(const char *type, const char *description,
const void payload[. plen], size t plen,
key_serial_t keyring);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

add_key() creates or updates a key of the given type and description, instantiates it with
the payload of length plen, attaches it to the nominated keyring, and returns the key’s
serial number.

The key may be rejected if the provided data is in the wrong format or it is invalid in
some other way.

I the destination keyring already contains a key that matches the specified type and de-
scription, then, if the key type supports it, that key will be updated rather than a new key
being created; if not, a new key (with a different ID) will be created and it will displace
the link to the extant key from the keyring.

The destination keyring serial number may be that of a valid keyring for which the caller
has write permission. Alternatively, it may be one of the following special keyring IDs:

KEY_SPEC_THREAD KEYRING
This specifies the caller’s thread-specific keyring (thread—keyring(7)).

KEY_SPEC PROCESS KEYRING
This specifies the caller’s process-specific keyring (process—keyring(7)).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring (session—keyring(7)).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring (user—keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring (user—session—keyring(7)).

Key types
The key type is a string that specifies the key’s type. Internally, the kernel defines a
number of key types that are available in the core key management code. Among the
types that are available for user-space use and can be specified as the type argument to
add_key() are the following:

"keyring"
Keyrings are special key types that may contain links to sequences of other keys
of any type. If this interface is used to create a keyring, then payload should be
NULL and plen should be zero.

Linux man-pages 6.8 2024-05-02 50

add_key(2) System Calls Manual add_key(2)

"user"
This is a general purpose key type whose payload may be read and updated by
user-space applications. The key is kept entirely within kernel memory. The
payload for keys of this type is a blob of arbitrary data of up to 32,767 bytes.

"logon" (since Linux 3.3)
This key type is essentially the same as "user"”, but it does not permit the key to
read. This is suitable for storing payloads that you do not want to be readable
from user space.

This key type vets the description to ensure that it is qualified by a "service" prefix, by
checking to ensure that the description contains a ’:” that is preceded by other charac-
ters.

"big_key" (since Linux 3.13)
This key type is similar to "user"”, but may hold a payload of up to 1 MiB. If the
key payload is large enough, then it may be stored encrypted in tmpfs (which can
be swapped out) rather than kernel memory.

For further details on these key types, see keyrings(7).

RETURN VALUE
On success, add_key() returns the serial number of the key it created or updated. On er-
ror, —1 is returned and errno is set to indicate the error.

ERRORS
EACCES
The keyring wasn’t available for modification by the user.

EDQUOT
The key quota for this user would be exceeded by creating this key or linking it
to the keyring.

EFAULT
One or more of type, description, and payload points outside process’s accessi-
ble address space.

EINVAL
The size of the string (including the terminating null byte) specified in type or
description exceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL
The payload data was invalid.

EINVAL
type was "logon" and the description was not qualified with a prefix string of the
form "'service:".

EKEYEXPIRED
The keyring has expired.

EKEYREVOKED
The keyring has been revoked.

ENOKEY
The keyring doesn’t exist.

Linux man-pages 6.8 2024-05-02 51

add_key(2) System Calls Manual add_key(2)

ENOMEM
Insufficient memory to create a key.

EPERM
The type started with a period (."). Key types that begin with a period are re-
served to the implementation.

EPERM
type was "keyring" and the description started with a period ('."). Keyrings with
descriptions (names) that begin with a period are reserved to the implementation.

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

NOTES
glibc does not provide a wrapper for this system call. A wrapper is provided in the
libkeyutils library. (The accompanying package provides the <keyutils.h> header file.)
When employing the wrapper in that library, link with —Ikeyutils.

EXAMPLES
The program below creates a key with the type, description, and payload specified in its
command-line arguments, and links that key into the session keyring. The following
shell session demonstrates the use of the program:

$./a.out user mykey "'Some payload"

Key ID is 64a4dca

$ grep “64addca® /proc/keys

O64addca 1-—Q—— 1 perm 3f010000 1000 1000 user mykey: 12

Program source

#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])

{
key serial_t key;

it (argc 1= 4) {
fprintf(stderr, "Usage: %s type description payload\n",

argv[o]D:;
exi1t(EXIT_FAILURE);

}

key = add_key(argv[1l], argv[2], argv[3], strlen(argv[3]),
KEY_SPEC_SESSION_KEYRING);

Linux man-pages 6.8 2024-05-02 52

add_key(2) System Calls Manual add_key(2)

if (key == -1) {
perror(*'add_key');
ex1t(EXIT_FAILURE);
}

printf("’Key ID is %jx\n", (uintmax_t) key);

exit(EXIT_SUCCESS);
}
SEE ALSO
keyctl(1), keyctl(2), request_key(2), keyctl(3), keyrings(7), keyutils(7),
persistent-keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7),
user-keyring(7), user-session-keyring(7)

The kernel source files Documentation/security/keys/core.rst and
Documentation/keys/request—key.rst (or, before Linux 4.13, in the files
Documentation/security/keys.txt and Documentation/security/keys—request—key.txt).

Linux man-pages 6.8 2024-05-02 53

adjtimex(2) System Calls Manual adjtimex(2)

NAME

adjtimex, clock_adjtime, ntp_adjtime — tune kernel clock
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/timex.h>
int adjtimex(struct timex *buf);
int clock_adjtime(clockid_t clk_id, struct timex *buf);

int ntp_adjtime(struct timex *buf);

DESCRIPTION
Linux uses David L. Mills’ clock adjustment algorithm (see RFC 5905). The system
call adjtimex() reads and optionally sets adjustment parameters for this algorithm. It
takes a pointer to a timex structure, updates kernel parameters from (selected) field val-
ues, and returns the same structure updated with the current kernel values. This struc-

ture is declared as follows:

struct timex {
int modes;
long offset;

long freq;

long maxerror;
long esterror;
int status;
long constant;
long precision;

long tolerance;

struct timeval time;

long tick;
long ppsfreq;

long jitter;

int shift;
long stabil;

long jitcnt;

Linux man-pages 6.8

/*
/*

/*
/*
/*
/*
/*
/*

/*

/*

/*
/*

/*

/*

/*

/*

Mode selector */

Time offset; nanoseconds, 1f STA NANO
status flag is set, otherwise
microseconds */

Frequency offset; see NOTES for units */
Maximum error (microseconds) */
Estimated error (microseconds) */

Clock command/status */

PLL (phase-locked loop) time constant */
Clock precision

(microseconds, read-only) */

Clock frequency tolerance (read-only);
see NOTES for units */

Current time (read-only, except for
ADJ_SETOFFSET); upon return, time.tv_usec
contains nanoseconds, 1f STA NANO status
flag 1s set, otherwise microseconds */
Microseconds between clock ticks */

PPS (pulse per second) frequency
(read-only); see NOTES for units */

PPS jitter (read-only); nanoseconds, if
STA_NANO status flag is set, otherwise
microseconds */

PPS interval duration

(seconds, read-only) */

PPS stability (read-only);

see NOTES for units */

PPS count of jitter limit exceeded
events (read-only) */

2024-05-02 54

adjtimex(2) System Calls Manual adjtimex(2)

long calcnt; /* PPS count of calibration intervals
(read-only) */

long errcnt; /* PPS count of calibration errors
(read-only) */

long stbcnt; /* PPS count of stability limit exceeded
events (read-only) */

int tai; /* TAl offset, as set by previous ADJ TAI

operation (seconds, read-only,
since Linux 2.6.26) */
/* Further padding bytes to allow for future expansion */
};
The modes field determines which parameters, if any, to set. (As described later in this
page, the constants used for ntp_adjtime() are equivalent but differently named.) Itis a
bit mask containing a bitwise OR combination of zero or more of the following bits:

ADJ _OFFSET
Set time offset from buf.offset. Since Linux 2.6.26, the supplied value is
clamped to the range (-0.5s, +0.5s). In older kernels, an EINVAL error occurs
if the supplied value is out of range.

ADJ FREQUENCY
Set frequency offset from buf.freq. Since Linux 2.6.26, the supplied value is
clamped to the range (—32768000, +32768000). In older kernels, an EINVAL
error occurs if the supplied value is out of range.

ADJ MAXERROR
Set maximum time error from buf.maxerror.

ADJ ESTERROR
Set estimated time error from buf.esterror.

ADJ STATUS
Set clock status bits from buf.status. A description of these bits is provided be-
low.

ADJ_TIMECONST
Set PLL time constant from buf.constant. If the STA_NANO status flag (see be-
low) is clear, the kernel adds 4 to this value.

ADJ_SETOFFSET (since Linux 2.6.39)
Add buf.time to the current time. If buf.status includes the ADJ_NANO flag,
then buf.time.tv_usec is interpreted as a nanosecond value; otherwise it is inter-
preted as microseconds.

The value of buf.time is the sum of its two fields, but the field buf.time.tv_usec
must always be nonnegative. The following example shows how to normalize a
timeval with nanosecond resolution.

while (buf.time.tv_usec < 0) {
buf.time.tv_sec -= 1;
buf.time.tv_usec += 1000000000;

Linux man-pages 6.8 2024-05-02 55

adjtimex(2) System Calls Manual adjtimex(2)

ADJ_MICRO (since Linux 2.6.26)
Select microsecond resolution.

ADJ_NANO (since Linux 2.6.26)
Select nanosecond resolution. Only one of ADJ_MICRO and ADJ_NANO
should be specified.

ADJ_TAI (since Linux 2.6.26)
Set TAI (Atomic International Time) offset from buf.constant.

ADJ_TAI should not be used in conjunction with ADJ_TIMECONST, since
the latter mode also employs the buf.constant field.

For a complete explanation of TAI and the difference between TAI and UTC, see
BIPM

ADJ TICK
Set tick value from buf.tick.

Alternatively, modes can be specified as either of the following (multibit mask) values,
in which case other bits should not be specified in modes:

ADJ_OFFSET_SINGLESHOT
Old-fashioned adjtime(3): (gradually) adjust time by value specified in buf.offset,
which specifies an adjustment in microseconds.

ADJ OFFSET_SS_READ (functional since Linux 2.6.28)
Return (in buf.offset) the remaining amount of time to be adjusted after an earlier
ADJ_OFFSET_SINGLESHOT operation. This feature was added in Linux
2.6.24, but did not work correctly until Linux 2.6.28.

Ordinary users are restricted to a value of either 0 or ADJ_OFFSET_SS_READ for
modes. Only the superuser may set any parameters.

The buf.status field is a bit mask that is used to set and/or retrieve status bits associated
with the NTP implementation. Some bits in the mask are both readable and settable,
while others are read-only.

STA _PLL (read-write)
Enable phase-locked loop (PLL) updates via ADJ_OFFSET.

STA _PPSFREQ (read-write)
Enable PPS (pulse-per-second) frequency discipline.

STA_PPSTIME (read-write)
Enable PPS time discipline.

STA_FLL (read-write)
Select frequency-locked loop (FLL) mode.

STA_INS (read-write)
Insert a leap second after the last second of the UTC day, thus extending the last
minute of the day by one second. Leap-second insertion will occur each day, so
long as this flag remains set.

STA_DEL (read-write)
Delete a leap second at the last second of the UTC day. Leap second deletion
will occur each day, so long as this flag remains set.

Linux man-pages 6.8 2024-05-02 56

http://www.bipm.org/en/bipm/tai/tai.html

adjtimex(2) System Calls Manual adjtimex(2)

STA_UNSYNC (read-write)
Clock unsynchronized.

STA_FREQHOLD (read-write)
Hold frequency. Normally adjustments made via ADJ OFFSET result in
dampened frequency adjustments also being made. So a single call corrects the
current offset, but as offsets in the same direction are made repeatedly, the small
frequency adjustments will accumulate to fix the long-term skew.

This flag prevents the small frequency adjustment from being made when cor-
recting for an ADJ_OFFSET value.

STA _PPSSIGNAL (read-only)
A valid PPS (pulse-per-second) signal is present.

STA PPSJITTER (read-only)
PPS signal jitter exceeded.

STA PPSWANDER (read-only)
PPS signal wander exceeded.

STA PPSERROR (read-only)
PPS signal calibration error.

STA CLOCKERR (read-only)
Clock hardware fault.

STA _NANO (read-only; since Linux 2.6.26)
Resolution (0 = microsecond, 1 = nanoseconds). Set via ADJ _NANO, cleared
via ADJ_MICRO.

STA_MODE (since Linux 2.6.26)
Mode (0 = Phase Locked Loop, 1 = Frequency Locked Loop).

STA_CLK (read-only; since Linux 2.6.26)
Clock source (0 = A, 1 = B); currently unused.

Attempts to set read-only status bits are silently ignored.

clock_adjtime ()
The clock_adjtime() system call (added in Linux 2.6.39) behaves like adjtimex() but
takes an additional clk_id argument to specify the particular clock on which to act.

ntp_adjtime ()
The ntp_adjtime() library function (described in the NTP "Kernel Application Program
API", KAPI) is a more portable interface for performing the same task as adjtimex().
Other than the following points, it is identical to adjtimex():

» The constants used in modes are prefixed with "MOD _" rather than "ADJ ", and
have the same suffixes (thus, MOD_OFFSET, MOD_FREQUENCY, and so on),
other than the exceptions noted in the following points.

* MOD_CLKA is the synonym for ADJ_OFFSET_SINGLESHOT.
e MOD_CLKB is the synonym for ADJ_TICK.

e The is no synonym for ADJ_OFFSET_SS_READ, which is not described in the
KAPI.

Linux man-pages 6.8 2024-05-02 57

adjtimex(2) System Calls Manual adjtimex(2)

RETURN VALUE
On success, adjtimex() and ntp_adjtime() return the clock state; that is, one of the fol-
lowing values:

TIME_OK Clock synchronized, no leap second adjustment pending.
TIME_INS Indicates that a leap second will be added at the end of the UTC day.

TIME_DEL
Indicates that a leap second will be deleted at the end of the UTC day.

TIME_OOP
Insertion of a leap second is in progress.

TIME_WAIT
A leap-second insertion or deletion has been completed. This value will
be returned until the next ADJ_STATUS operation clears the STA_INS
and STA_DEL flags.

TIME_ERROR
The system clock is not synchronized to a reliable server. This value is
returned when any of the following holds true:

» Either STA_UNSYNC or STA_CLOCKERR is set.

 STA PPSSIGNAL is clear and either STA_PPSFREQ or STA PP-
STIME is set.

 STA_PPSTIME and STA_PPSJITTER are both set.

 STA_PPSFREQ is set and either STA_PPSWANDER or STA_PP-
SJIITTER is set.

The symbolic name TIME_BAD is a synonym for TIME_ERROR, pro-
vided for backward compatibility.

Note that starting with Linux 3.4, the call operates asynchronously and the return value
usually will not reflect a state change caused by the call itself.

On failure, these calls return —1 and set errno to indicate the error.

ERRORS
EFAULT
buf does not point to writable memory.

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.freq to a value outside the range (—33554432,
+33554432).

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.offset to a value outside the permitted range. Be-
fore Linux 2.0, the permitted range was (-131072, +131072). From Linux 2.0
onwards, the permitted range was (—-512000, +512000).

EINVAL
An attempt was made to set buf.status to a value other than those listed above.

Linux man-pages 6.8 2024-05-02 58

adjtimex(2) System Calls Manual adjtimex(2)

EINVAL
The clk_id given to clock_adjtime() is invalid for one of two reasons. Either the
System-V style hard-coded positive clock ID value is out of range, or the dy-
namic clk_id does not refer to a valid instance of a clock object. See
clock_gettime(2) for a discussion of dynamic clocks.

EINVAL
An attempt was made to set buf.tick to a value outside the range 900000/HZ to
1100000/HZ, where HZ is the system timer interrupt frequency.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk_id has disappeared after its character device was opened. See
clock_gettime(2) for a discussion of dynamic clocks.

EOPNOTSUPP
The given clk_id does not support adjustment.

EPERM
buf.modes is neither 0 nor ADJ_OFFSET_SS READ, and the caller does not
have sufficient privilege. Under Linux, the CAP_SYS_TIME capability is re-
quired.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
ntp_adjtime() Thread safety | MT-Safe

STANDARDS
adjtimex()
clock_adjtime()

Linux.

The preferred API for the NTP daemon is ntp_adjtime().

NOTES
In struct timex, freq, ppsfreq, and stabil are ppm (parts per million) with a 16-bit frac-
tional part, which means that a value of 1 in one of those fields actually means 2°-16
ppm, and 2°16=65536 is 1 ppm. This is the case for both input values (in the case of
freq) and output values.

The leap-second processing triggered by STA _INS and STA_DEL is done by the kernel
in timer context. Thus, it will take one tick into the second for the leap second to be in-
serted or deleted.

SEE ALSO
clock_gettime(2), clock settime(2), settimeofday(2), adjtime(3), ntp_gettime(3),
capabilities(7), time(7), adjtimex(8), hwclock(8)

NTP "Kernel Application Program Interface"

Linux man-pages 6.8 2024-05-02 59

http://www.slac.stanford.edu/comp/unix/package/rtems/src/ssrlApps/ntpNanoclock/api.htm

alarm(2) System Calls Manual alarm(2)

NAME

alarm — set an alarm clock for delivery of a signal
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

DESCRIPTION
alarm() arranges for a SIGALRM signal to be delivered to the calling process in sec-
onds seconds.

If seconds is zero, any pending alarm is canceled.

In any event any previously set alarm() is canceled.
RETURN VALUE

alarm() returns the number of seconds remaining until any previously scheduled alarm
was due to be delivered, or zero if there was no previously scheduled alarm.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
alarm() and setitimer(2) share the same timer; calls to one will interfere with use of the
other.

Alarms created by alarm() are preserved across execve(2) and are not inherited by chil-
dren created via fork(2).

sleep(3) may be implemented using SIGALRM; mixing calls to alarm() and sleep(3) is
a bad idea.

Scheduling delays can, as ever, cause the execution of the process to be delayed by an
arbitrary amount of time.

SEE ALSO
gettimeofday(2), pause(2), select(2), setitimer(2), sigaction(2), signal(2),
timer_create(2), timerfd_create(2), sleep(3), time(7)

Linux man-pages 6.8 2024-05-02 60

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

NAME
alloc_hugepages, free_hugepages — allocate or free huge pages

SYNOPSIS
void *syscall(SYS_alloc_hugepages, int key, void addr[.len], size t len,
int prot, int flag);
int syscall(SYS_free_hugepages, void *addr);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The system calls alloc_hugepages() and free_hugepages() were introduced in Linux
2.5.36 and removed again in Linux 2.5.54. They existed only on i386 and ia64 (when
built with CONFIG_HUGETLB_PAGE). In Linux 2.4.20, the syscall numbers exist,
but the calls fail with the error ENOSYS.

On i386 the memory management hardware knows about ordinary pages (4 KiB) and
huge pages (2 or 4 MiB). Similarly ia64 knows about huge pages of several sizes.
These system calls serve to map huge pages into the process’s memory or to free them
again. Huge pages are locked into memory, and are not swapped.

The key argument is an identifier. When zero the pages are private, and not inherited by
children. When positive the pages are shared with other applications using the same
key, and inherited by child processes.

The addr argument of free_hugepages() tells which page is being freed: it was the re-
turn value of a call to alloc_hugepages(). (The memory is first actually freed when all
users have released it.) The addr argument of alloc_hugepages() is a hint, that the ker-
nel may or may not follow. Addresses must be properly aligned.

The len argument is the length of the required segment. It must be a multiple of the
huge page size.

The prot argument specifies the memory protection of the segment. It is one of
PROT_READ, PROT_WRITE, PROT_EXEC.

The flag argument is ignored, unless key is positive. In that case, if flag is
IPC_CREAT, then a new huge page segment is created when none with the given key
existed. If this flag is not set, then ENOENT is returned when no segment with the
given key exists.

RETURN VALUE
On success, alloc_hugepages() returns the allocated virtual address, and
free_hugepages() returns zero. On error, —1 is returned, and errno is set to indicate the
error.

ERRORS
ENOSYS
The system call is not supported on this kernel.

FILES
/proc/sys/vm/nr_hugepages
Number of configured hugetlb pages. This can be read and written.

Linux man-pages 6.8 2024-05-02 61

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

/proc/meminfo
Gives info on the number of configured hugetlb pages and on their size in the
three variables HugePages_Total, HugePages_Free, Hugepagesize.

STANDARDS

Linux on Intel processors.

HISTORY
These system calls are gone; they existed only in Linux 2.5.36 through to Linux 2.5.54.

NOTES
Now the hugetlbfs filesystem can be used instead. Memory backed by huge pages (if
the CPU supports them) is obtained by using mmap(2) to map files in this virtual filesys-
tem.

The maximal number of huge pages can be specified using the hugepages= boot para-
meter.

Linux man-pages 6.8 2024-05-02 62

arch_prctl(2) System Calls Manual arch_prctl(2)

NAME

arch_prctl — set architecture-specific thread state
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <asm/prctl.h> /* Definition of ARCH_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_arch_prectl, int op, unsigned long addr);
int syscall(SYS_arch_prectl, int op, unsigned long *addr);

Note: glibc provides no wrapper for arch_prctl(), necessitating the use of syscall(2).
DESCRIPTION

arch_prctl() sets architecture-specific process or thread state. op selects an operation
and passes argument addr to it; addr is interpreted as either an unsigned long for the

"set" operations, or as an unsigned long *, for the "get" operations.
Subfunctions for both x86 and x86-64 are:
ARCH_SET_CPUID (since Linux 4.12)

Enable (addr !'= 0) or disable (addr == 0) the cpuid instruction for the calling
thread. The instruction is enabled by default. If disabled, any execution of a
cpuid instruction will instead generate a SIGSEGV signal. This feature can be
used to emulate cpuid results that differ from what the underlying hardware

would have produced (e.g., in a paravirtualization setting).

The ARCH_SET_CPUID setting is preserved across fork(2) and clone(2) but

reset to the default (i.e., cpuid enabled) on execve(2).
ARCH_GET_CPUID (since Linux 4.12)

Return the setting of the flag manipulated by ARCH_SET_CPUID as the result

of the system call (1 for enabled, O for disabled). addr is ignored.
Subfunctions for x86-64 only are:

ARCH_SET_FS
Set the 64-bit base for the FS register to addr.

ARCH_GET_FS

Return the 64-bit base value for the FS register of the calling thread in the un-

signed long pointed to by addr.

ARCH_SET GS
Set the 64-bit base for the GS register to addr.

ARCH_GET_GS

Return the 64-bit base value for the GS register of the calling thread in the un-

signed long pointed to by addr.
RETURN VALUE

On success, arch_prctl() returns 0; on error, —1 is returned, and errno is set to indicate

the error.

Linux man-pages 6.8 2024-05-02

63

arch_prctl(2) System Calls Manual arch_prctl(2)

ERRORS
EFAULT
addr points to an unmapped address or is outside the process address space.

EINVAL
op is not a valid operation.

ENODEV

ARCH_SET_CPUID was requested, but the underlying hardware does not sup-
port CPUID faulting.

EPERM
addr is outside the process address space.

STANDARDS
Linux/x86-64.

NOTES
arch_prctl() is supported only on Linux/x86-64 for 64-bit programs currently.

The 64-bit base changes when a new 32-bit segment selector is loaded.
ARCH_SET_GS is disabled in some kernels.

Context switches for 64-bit segment bases are rather expensive. As an optimization, if a
32-bit TLS base address is used, arch_prctl() may use a real TLS entry as if
set_thread_area(2) had been called, instead of manipulating the segment base register
directly. Memory in the first 2 GB of address space can be allocated by using mmap(2)
with the MAP_32BIT flag.

Because of the aforementioned optimization, using arch_prctl() and set_thread_area(2)
in the same thread is dangerous, as they may overwrite each other’s TLS entries.

FS may be already used by the threading library. Programs that use ARCH_SET _FS
directly are very likely to crash.

SEE ALSO
mmap(2), modify_ldt(2), prctl(2), set_thread_area(2)

AMD X86-64 Programmer’s manual

Linux man-pages 6.8 2024-05-02 64

bdflush(2) System Calls Manual bdflush(2)

NAME
bdflush — start, flush, or tune buffer-dirty-flush daemon

SYNOPSIS

#include <sys/kdaemon.h>

[[deprecated]] int bdflush(int func, long *address);
[[deprecated]] int bdflush(int func, long data);

DESCRIPTION
Note: Since Linux 2.6, this system call is deprecated and does nothing. It is likely to
disappear altogether in a future kernel release. Nowadays, the task performed by bd-
flush() is handled by the kernel pdflush thread.

bdflush() starts, flushes, or tunes the buffer-dirty-flush daemon. Only a privileged
process (one with the CAP_SYS_ADMIN capability) may call bdflush().

If func is negative or 0, and no daemon has been started, then bdflush() enters the dae-
mon code and never returns.

If func is 1, some dirty buffers are written to disk.

If func is 2 or more and is even (low bit is 0), then address is the address of a long
word, and the tuning parameter numbered (func—2)/2 is returned to the caller in that ad-
dress.

If func is 3 or more and is odd (low bit is 1), then data is a long word, and the kernel
sets tuning parameter numbered (func—3)/2 to that value.

The set of parameters, their values, and their valid ranges are defined in the Linux kernel
source file fs/buffer.c.

RETURN VALUE
If func is negative or 0 and the daemon successfully starts, bdflush() never returns.
Otherwise, the return value is 0 on success and -1 on failure, with errno set to indicate
the error.

ERRORS
EBUSY
An attempt was made to enter the daemon code after another process has already
entered.

EFAULT
address points outside your accessible address space.

EINVAL
An attempt was made to read or write an invalid parameter number, or to write
an invalid value to a parameter.

EPERM
Caller does not have the CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Since glibc 2.23, glibc no longer supports this obsolete system call.

Linux man-pages 6.8 2024-05-02 65

bdflush(2) System Calls Manual bdflush(2)

SEE ALSO
sync(1), fsync(2), sync(2)

Linux man-pages 6.8 2024-05-02 66

bind(2) System Calls Manual bind(2)

NAME

bind — bind a name to a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
When a socket is created with socket(2), it exists in a name space (address family) but
has no address assigned to it. bind() assigns the address specified by addr to the socket
referred to by the file descriptor sockfd. addrlen specifies the size, in bytes, of the ad-
dress structure pointed to by addr. Traditionally, this operation is called “assigning a
name to a socket”.

It is normally necessary to assign a local address using bind() before a
SOCK_STREAM socket may receive connections (see accept(2)).

The rules used in name binding vary between address families. Consult the manual en-
tries in Section 7 for detailed information. For AF_INET, see ip(7); for AF_INETS6,
see ipv6(7); for AF_UNIX, see unix(7); for AF_APPLETALK, see ddp(7); for
AF_PACKET, see packet(7); for AF_X25, see x25(7); and for AF_NETLINK, see
netlink(7).

The actual structure passed for the addr argument will depend on the address family.
The sockaddr structure is defined as something like:

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];
}

The only purpose of this structure is to cast the structure pointer passed in addr in order
to avoid compiler warnings. See EXAMPLES below.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES
The address is protected, and the user is not the superuser.

EADDRINUSE
The given address is already in use.

EADDRINUSE
(Internet domain sockets) The port number was specified as zero in the socket
address structure, but, upon attempting to bind to an ephemeral port, it was deter-
mined that all port numbers in the ephemeral port range are currently in use. See
the discussion of /proc/sys/net/ipv4/ip_local_port_range ip(7).

Linux man-pages 6.8 2024-05-02 67

bind(2) System Calls Manual bind(2)

EBADF
sockfd is not a valid file descriptor.

EINVAL
The socket is already bound to an address.

EINVAL
addrlen is wrong, or addr is not a valid address for this socket’s domain.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EADDRNOTAVAIL
A nonexistent interface was requested or the requested address was not local.

EFAULT
addr points outside the user’s accessible address space.

ELOOP
Too many symbolic links were encountered in resolving addr.

ENAMETOOLONG
addr is too long.

ENOENT
A component in the directory prefix of the socket pathname does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

EROFS
The socket inode would reside on a read-only filesystem.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (bind() first appeared in 4.2BSD).

BUGS

The transparent proxy options are not described.

EXAMPLES

An example of the use of bind() with Internet domain sockets can be found in
getaddrinfo(3).

The following example shows how to bind a stream socket in the UNIX (AF_UNIX)
domain, and accept connections:

#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.8 2024-05-02 68

bind (2)

System Calls Manual

#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

#define MY_SOCK_PATH */somepath™
#define LISTEN BACKLOG 50

#define handle_error(msg) \

do { perror(msg); exit(EXIT_FAILURE); } while (0)

int

main(void)

{
int sfd, cfd;
socklen_t peer_addr_size;

struct sockaddr_un my_addr, peer_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == -1)
handle_error(*'socket™);

memset(&my addr, 0, sizeof(my_addr));

my_ addr.sun_family = AF_UNIX;

strncpy(my_addr.sun_path, MY_SOCK_PATH,
sizeof(my_addr.sun_path) - 1);

if (bind(sfd, (struct sockaddr *) &my_ addr,
sizeof(my_addr)) == -1)
handle_error('bind™);

iT (listen(sfd, LISTEN_BACKLOG) == -1)
handle_error(*'listen™);

/* Now we can accept incoming connections one
at a time using accept(2). */

peer_addr_size = sizeof(peer_addr);
cfd = accept(sfd, (struct sockaddr *) &peer_addr,
&peer_addr_size);
if (cfd == -1)
handle_error('accept™);

/* Code to deal with incoming connection(s)... */

it (close(sfd) == -1)
handle_error(*'close™);

Linux man-pages 6.8 2024-05-02

bind (2)

69

bind(2) System Calls Manual

iT (unlink(MY_SOCK_PATH) == -1)
handle_error(""'unlink'™);

}

SEE ALSO
accept(2), connect(2), getsockname(2), listen(2), socket(2),
getifaddrs(3), ip(7), ipv6(7), path_resolution(7), socket(7), unix(7)

Linux man-pages 6.8 2024-05-02

bind (2)

getaddrinfo(3),

70

bpf (2) System Calls Manual bpf (2)

NAME
bpf — perform a command on an extended BPF map or program

SYNOPSIS
#include <linux/bpf.h>

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

DESCRIPTION
The bpf() system call performs a range of operations related to extended Berkeley
Packet Filters. Extended BPF (or eBPF) is similar to the original (“classic") BPF
(cBPF) used to filter network packets. For both cBPF and eBPF programs, the kernel
statically analyzes the programs before loading them, in order to ensure that they cannot
harm the running system.

eBPF extends cBPF in multiple ways, including the ability to call a fixed set of in-kernel
helper functions (via the BPF_CALL opcode extension provided by eBPF) and access
shared data structures such as eBPF maps.

Extended BPF Design/Architecture
eBPF maps are a generic data structure for storage of different data types. Data types
are generally treated as binary blobs, so a user just specifies the size of the key and the
size of the value at map-creation time. In other words, a key/value for a given map can
have an arbitrary structure.

A user process can create multiple maps (with key/value-pairs being opaque bytes of
data) and access them via file descriptors. Different eBPF programs can access the same
maps in parallel. It’s up to the user process and eBPF program to decide what they store
inside maps.

There’s one special map type, called a program array. This type of map stores file de-
scriptors referring to other eBPF programs. When a lookup in the map is performed, the
program flow is redirected in-place to the beginning of another eBPF program and does
not return back to the calling program. The level of nesting has a fixed limit of 32, so
that infinite loops cannot be crafted. At run time, the program file descriptors stored in
the map can be modified, so program functionality can be altered based on specific re-
quirements. All programs referred to in a program-array map must have been previ-
ously loaded into the kernel via bpf(). If a map lookup fails, the current program con-
tinues its execution. See BPF_MAP_TYPE_PROG_ARRAY below for further details.

Generally, eBPF programs are loaded by the user process and automatically unloaded
when the process exits. In some cases, for example, tc-bpf (8), the program will con-
tinue to stay alive inside the kernel even after the process that loaded the program exits.
In that case, the tc subsystem holds a reference to the eBPF program after the file de-
scriptor has been closed by the user-space program. Thus, whether a specific program
continues to live inside the kernel depends on how it is further attached to a given kernel
subsystem after it was loaded via bpf().

Each eBPF program is a set of instructions that is safe to run until its completion. An
in-kernel verifier statically determines that the eBPF program terminates and is safe to
execute. During verification, the kernel increments reference counts for each of the
maps that the eBPF program uses, so that the attached maps can’t be removed until the
program is unloaded.

Linux man-pages 6.8 2024-05-02 71

bpf (2) System Calls Manual bpf (2)

eBPF programs can be attached to different events. These events can be the arrival of
network packets, tracing events, classification events by network queueing disciplines
(for eBPF programs attached to a tc(8) classifier), and other types that may be added in
the future. A new event triggers execution of the eBPF program, which may store infor-
mation about the event in eBPF maps. Beyond storing data, eBPF programs may call a
fixed set of in-kernel helper functions.

The same eBPF program can be attached to multiple events and different eBPF pro-
grams can access the same map:

tracing tracing tracing packet packet packet
event A event B event C on ethO on ethl on eth2
| | | | | "
| | | | v |
——> tracing <—-— tracing socket tc ingress tc egress
prog_1 prog_2 prog_3 classifier action
1 | | prog_4 prog_s
- — N R | map_3 | |
map_1 map_2 —| map_4 |—-
Arguments

The operation to be performed by the bpf() system call is determined by the cmd argu-
ment. Each operation takes an accompanying argument, provided via attr, which is a
pointer to a union of type bpf_attr (see below). The unused fields and padding must be
zeroed out before the call. The size argument is the size of the union pointed to by attr.

The value provided in cmd is one of the following:

BPF_MAP_CREATE
Create a map and return a file descriptor that refers to the map. The close-on-
exec file descriptor flag (see fcntl(2)) is automatically enabled for the new file de-
scriptor.

BPF_MAP_LOOKUP_ELEM
Look up an element by key in a specified map and return its value.

BPF_MAP_UPDATE_ELEM
Create or update an element (key/value pair) in a specified map.

BPF_MAP_DELETE_ELEM
Look up and delete an element by key in a specified map.

BPF_MAP_GET_NEXT_KEY
Look up an element by key in a specified map and return the key of the next ele-
ment.

BPF_PROG_LOAD
Verify and load an eBPF program, returning a new file descriptor associated with
the program. The close-on-exec file descriptor flag (see fcntl(2)) is automatically
enabled for the new file descriptor.

The bpf_attr union consists of various anonymous structures that are used by
different bpf() commands:

union bpf_attr {
struct { /* Used by BPF_MAP_CREATE */

Linux man-pages 6.8 2024-05-02 72

bpf (2) System Calls Manual bpf (2)

_u32 map_type;

. u32 key size; /* size of key iIn bytes */
_u32 value_size; /* size of value in bytes */
. u32 max_entries; /* maximum number of entries

in a map */

};

struct { /* Used by BPF_MAP_* ELEM and BPF_MAP_GET_NEXT_KEY
commands */

. u32 map_¥Td;
__aligned_u64 key;
union {

__aligned_u64 value;
__aligned_u64 next_key;

}:
__u6e4 flags;
}:
struct { /* Used by BPF_PROG _LOAD */
_u32 prog_type;
. u32 insn_cnt;
__aligned_u64 insns; /* "const struct bpf_insn ** */
__aligned _u64 license; /* “const char ** */
_u32 log level; /* verbosity level of verifier *
_u32 log_size; /* size of user buffer */
__aligned_u64 log buf; /* user supplied "char **
buffer */
. u32 kern_version;
/* checked when prog_type=kprobe
(since Linux 4.1) */
33
} _ attribute_ ((aligned(8)));

eBPF maps
Maps are a generic data structure for storage of different types of data. They allow shar-
ing of data between eBPF kernel programs, and also between kernel and user-space ap-
plications.

Each map type has the following attributes:
* type

e maximum number of elements

» Kkey size in bytes

e value size in bytes

The following wrapper functions demonstrate how various bpf() commands can be used
to access the maps. The functions use the cmd argument to invoke different operations.

Linux man-pages 6.8 2024-05-02 73

bpf (2) System Calls Manual bpf (2)

BPF_MAP_CREATE
The BPF_MAP_CREATE command creates a new map, returning a new file
descriptor that refers to the map.
int
bpf_create_map(enum bpf _map_type map_type,
unsigned int key size,
unsigned int value_size,
unsigned iInt max_entries)

{
union bpf_attr attr = {
.map_type = map_type,
-key _size = key_size,
.value_size = value_size,
-.max_entries = max_entries
}:
return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));
}

The new map has the type specified by map_type, and attributes as specified in
key size, value_size, and max_entries. On success, this operation returns a file
descriptor. On error, =1 is returned and errno is set to EINVAL, EPERM, or
ENOMEM.

The key_size and value_size attributes will be used by the verifier during pro-
gram loading to check that the program is calling bpf_map_* elem() helper
functions with a correctly initialized key and to check that the program doesn’t
access the map element value beyond the specified value_size. For example,
when a map is created with a key_size of 8 and the eBPF program calls

bpf_map_lookup_elem(map_fd, fp - 4)
the program will be rejected, since the in-kernel helper function
bpf_map_lookup_elem(map_fd, void *key)

expects to read 8 bytes from the location pointed to by key, but the fp — 4 (where
fp is the top of the stack) starting address will cause out-of-bounds stack access.

Similarly, when a map is created with a value_size of 1 and the eBPF program
contains

value = bpf_map_lookup _elem(...);

*(u32 *) value = 1;
the program will be rejected, since it accesses the value pointer beyond the spec-
ified 1 byte value_size limit.
Currently, the following values are supported for map_type:

enum bpf _map_type {
BPF_MAP_TYPE_UNSPEC, /* Reserve 0 as invalid map type */
BPF_MAP_TYPE_HASH,
BPF_MAP_TYPE_ARRAY,
BPF_MAP_TYPE_PROG_ARRAY,

Linux man-pages 6.8 2024-05-02 74

bpf (2)

};

System Calls Manual bpf (2)

BPF_MAP_TYPE_PERF_EVENT ARRAY,
BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_PERCPU_ARRAY,
BPF_MAP_TYPE_STACK_TRACE,
BPF_MAP_TYPE_CGROUP_ARRAY,
BPF_MAP_TYPE_LRU_HASH,
BPF_MAP_TYPE_LRU_PERCPU_HASH,
BPF_MAP_TYPE_LPM_TRIE,
BPF_MAP_TYPE_ARRAY_OF MAPS,
BPF_MAP_TYPE_HASH_OF MAPS,
BPF_MAP_TYPE_DEVMAP,
BPF_MAP_TYPE_SOCKMAP,
BPF_MAP_TYPE_CPUMAP,
BPF_MAP_TYPE_XSKMAP,
BPF_MAP_TYPE_SOCKHASH,
BPF_MAP_TYPE_CGROUP_STORAGE,
BPF_MAP_TYPE_REUSEPORT SOCKARRAY,
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
BPF_MAP_TYPE_QUEUE,
BPF_MAP_TYPE_STACK,

/* See /usr/include/linux/bpf.h for the full list.

map_type selects one of the available map implementations in the kernel. For all
map types, eBPF programs access maps with the same bpf_map_lookup_elem()
and bpf_map_update_elem() helper functions. Further details of the various
map types are given below.

BPF_MAP_LOOKUP_ELEM
The BPF_MAP_LOOKUP_ELEM command looks up an element with a given
key in the map referred to by the file descriptor fd.

int

bpf_lookup_elem(int fd, const void *key, void *value)

{

}

union bpf_attr attr = {

.map_fd = fd,
-key = ptr_to_u64(key),
.value = ptr_to _u64(value),

g

*/

return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));

If an element is found, the operation returns zero and stores the element’s value
into value, which must point to a buffer of value_size bytes.

If no element is found, the operation returns —1 and sets errno to ENOENT.

BPF_MAP_UPDATE_ELEM
The BPF_MAP_UPDATE_ELEM command creates or updates an element
with a given key/value in the map referred to by the file descriptor fd.

Linux man-pages 6.8

2024-05-02 75

bpf (2) System Calls Manual bpf (2)

int
bpf _update _elem(int fd, const void *key, const void *value,
uinté4_t flags)
{
union bpf_attr attr = {

-map_*d fd,
-key ptr_to_u64(key),
-.value ptr_to _u64(value),
.flags flags,

};

return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));
}

The flags argument should be specified as one of the following:

BPF_ANY
Create a new element or update an existing element.

BPF_NOEXIST
Create a new element only if it did not exist.

BPF_EXIST
Update an existing element.

On success, the operation returns zero. On error, —1 is returned and errno is set
to EINVAL, EPERM, ENOMEM, or E2BIG. E2BIG indicates that the num-
ber of elements in the map reached the max_entries limit specified at map cre-
ation time. EEXIST will be returned if flags specifies BPF_NOEXIST and the
element with key already exists in the map. ENOENT will be returned if flags
specifies BPF_EXIST and the element with key doesn’t exist in the map.

BPF_MAP_DELETE_ELEM
The BPF_MAP_DELETE_ELEM command deletes the element whose key is
key from the map referred to by the file descriptor fd.

int
bpf_delete_elem(int fd, const void *key)
{
union bpf_attr attr = {
-.map_fd = fd,
-key = ptr_to_u64(key),

};

return bpf(BPF_MAP_DELETE_ELEM, &attr, sizeof(attr));
}

On success, zero is returned. If the element is not found, —1 is returned and er-
ro is set to ENOENT.

BPF_MAP_GET_NEXT_KEY
The BPF_MAP_GET_NEXT_KEY command looks up an element by key in
the map referred to by the file descriptor fd and sets the next_key pointer to the
key of the next element.

Linux man-pages 6.8 2024-05-02 76

bpf (2) System Calls Manual bpf (2)

int
bpf _get next _key(int fd, const void *key, void *next key)
{
union bpf_attr attr = {
-map_*d fd,
-key ptr_to _u64(key),
-.next_key ptr_to_u64(next_key),

};

return bpf(BPF_MAP_GET_NEXT_KEY, &attr, sizeof(attr));
+

If key is found, the operation returns zero and sets the next_key pointer to the key
of the next element. If key is not found, the operation returns zero and sets the
next_key pointer to the key of the first element. If key is the last element, -1 is
returned and errno is set to ENOENT. Other possible errno values are
ENOMEM, EFAULT, EPERM, and EINVAL. This method can be used to it-
erate over all elements in the map.

close(map_fd)
Delete the map referred to by the file descriptor map_fd. When the user-space
program that created a map exits, all maps will be deleted automatically (but see
NOTES).

eBPF map types
The following map types are supported:

BPF_MAP_TYPE_HASH
Hash-table maps have the following characteristics:

» Maps are created and destroyed by user-space programs. Both user-space
and eBPF programs can perform lookup, update, and delete operations.

» The kernel takes care of allocating and freeing key/value pairs.

* The map_update_elem() helper will fail to insert new element when the
max_entries limit is reached. (This ensures that eBPF programs cannot ex-
haust memory.)

* map_update_elem() replaces existing elements atomically.
Hash-table maps are optimized for speed of lookup.

BPF_MAP_TYPE_ARRAY
Array maps have the following characteristics:

» Optimized for fastest possible lookup. In the future the verifier/JIT compiler
may recognize lookup() operations that employ a constant key and optimize
it into constant pointer. It is possible to optimize a non-constant key into di-
rect pointer arithmetic as well, since pointers and value_size are constant for
the life of the eBPF program. In other words, array_map_lookup_elem()
may be ’inlined’ by the verifier/JIT compiler while preserving concurrent ac-
cess to this map from user space.

Linux man-pages 6.8 2024-05-02 77

bpf (2)

System Calls Manual bpf (2)

» All array elements pre-allocated and zero initialized at init time
» The key is an array index, and must be exactly four bytes.

* map_delete_elem() fails with the error EINVAL, since elements cannot be
deleted.

* map_update_elem() replaces elements in a nonatomic fashion; for atomic
updates, a hash-table map should be used instead. There is however one spe-
cial case that can also be used with arrays: the atomic built-in
__sync_fetch_and_add() can be used on 32 and 64 bit atomic counters. For
example, it can be applied on the whole value itself if it represents a single
counter, or in case of a structure containing multiple counters, it could be
used on individual counters. This is quite often useful for aggregation and
accounting of events.

Among the uses for array maps are the following:

» As "global" eBPF variables: an array of 1 element whose key is (index) 0 and
where the value is a collection of ’global’ variables which eBPF programs
can use to keep state between events.

» Aggregation of tracing events into a fixed set of buckets.

» Accounting of networking events, for example, number of packets and packet
sizes.

BPF_MAP_TYPE_PROG_ARRAY (since Linux 4.2)

A program array map is a special kind of array map whose map values contain
only file descriptors referring to other eBPF programs. Thus, both the key_size
and value_size must be exactly four bytes. This map is used in conjunction with
the bpf_tail_call() helper.

This means that an eBPF program with a program array map attached to it can
call from kernel side into

void bpf_tail_call(void *context, void *prog_map,
unsigned Int index);

and therefore replace its own program flow with the one from the program at the
given program array slot, if present. This can be regarded as kind of a jump ta-
ble to a different eBPF program. The invoked program will then reuse the same
stack. When a jump into the new program has been performed, it won’t return to
the old program anymore.

If no eBPF program is found at the given index of the program array (because
the map slot doesn’t contain a valid program file descriptor, the specified lookup
index/key is out of bounds, or the limit of 32 nested calls has been exceed), exe-
cution continues with the current eBPF program. This can be used as a fall-
through for default cases.

A program array map is useful, for example, in tracing or networking, to handle
individual system calls or protocols in their own subprograms and use their iden-
tifiers as an individual map index. This approach may result in performance ben-
efits, and also makes it possible to overcome the maximum instruction limit of a
single eBPF program. In dynamic environments, a user-space daemon might

Linux man-pages 6.8 2024-05-02 78

bpf (2) System Calls Manual bpf (2)

atomically replace individual subprograms at run-time with newer versions to al-
ter overall program behavior, for instance, if global policies change.

eBPF programs
The BPF_PROG_LOAD command is used to load an eBPF program into the kernel.
The return value for this command is a new file descriptor associated with this eBPF
program.

char bpf_log buf[LOG_BUF_SIZE];

int

bpf _prog load(enum bpf_prog_type type,
const struct bpf_insn *insns, iInt insn_cnt,
const char *license)

{
union bpf_attr attr = {
-prog_type = type,
-insns = ptr_to_u64(insns),
.insn_cnt = iInsn_cnt,
-license = ptr_to _u64(license),
.log_buf = ptr_to_u64(bpf_log_buf),
.log_size = LOG BUF_SIZE,
-log_level =1,
}:
return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
}

prog_type is one of the available program types:

enum bpf_prog_type {

BPF _PROG_TYPE_ UNSPEC, /* Reserve 0 as invalid
program type */

BPF_PROG_TYPE_SOCKET_FILTER,
BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_SCHED_CLS,
BPF_PROG_TYPE_SCHED_ ACT,
BPF_PROG_TYPE_TRACEPOINT,
BPF_PROG_TYPE_XDP,
BPF_PROG_TYPE_PERF_EVENT,
BPF_PROG_TYPE_CGROUP_SKB,
BPF_PROG_TYPE_CGROUP_SOCK,
BPF_PROG_TYPE_LWT_IN,
BPF_PROG_TYPE_LWT_OUT,
BPF_PROG_TYPE_LWT_XMIT,
BPF_PROG_TYPE_SOCK_OPS,
BPF_PROG_TYPE_SK_ SKB,
BPF_PROG_TYPE_CGROUP_DEVICE,
BPF_PROG_TYPE_SK MSG,
BPF_PROG_TYPE_RAW_TRACEPOINT,
BPF_PROG_TYPE_CGROUP_SOCK_ADDR,

Linux man-pages 6.8 2024-05-02 79

bpf (2) System Calls Manual bpf (2)

BPF_PROG_TYPE_LWT_ SEG6LOCAL,

BPF_PROG_TYPE_LIRC_MODE2,

BPF_PROG_TYPE_SK_REUSEPORT,
BPF_PROG_TYPE_FLOW_DISSECTOR,

/* See /usr/include/linux/bpf.h for the full list. */

}:
For further details of eBPF program types, see below.
The remaining fields of bpf_attr are set as follows:
* insns is an array of struct bpf_insn instructions.
e insn_cnt is the number of instructions in the program referred to by insns.

» license is a license string, which must be GPL compatible to call helper functions
marked gpl_only. (The licensing rules are the same as for kernel modules, so that
also dual licenses, such as "Dual BSD/GPL", may be used.)

* log_buf is a pointer to a caller-allocated buffer in which the in-kernel verifier can
store the verification log. This log is a multi-line string that can be checked by the
program author in order to understand how the verifier came to the conclusion that
the eBPF program is unsafe. The format of the output can change at any time as the
verifier evolves.

* log_size size of the buffer pointed to by log_buf. If the size of the buffer is not large
enough to store all verifier messages, —1 is returned and errno is set to ENOSPC.

* log_level verbosity level of the verifier. A value of zero means that the verifier will
not provide a log; in this case, log_buf must be a null pointer, and log_size must be
zero.

Applying close(2) to the file descriptor returned by BPF_PROG_LOAD will unload the
eBPF program (but see NOTES).

Maps are accessible from eBPF programs and are used to exchange data between eBPF
programs and between eBPF programs and user-space programs. For example, eBPF
programs can process various events (like kprobe, packets) and store their data into a
map, and user-space programs can then fetch data from the map. Conversely, user-space
programs can use a map as a configuration mechanism, populating the map with values
checked by the eBPF program, which then modifies its behavior on the fly according to
those values.

eBPF program types
The eBPF program type (prog_type) determines the subset of kernel helper functions
that the program may call. The program type also determines the program input (con-
text)—the format of struct bpf_context (which is the data blob passed into the eBPF pro-
gram as the first argument).

For example, a tracing program does not have the exact same subset of helper functions
as a socket filter program (though they may have some helpers in common). Similarly,
the input (context) for a tracing program is a set of register values, while for a socket fil-
ter it is a network packet.

The set of functions available to eBPF programs of a given type may increase in the fu-
ture.

Linux man-pages 6.8 2024-05-02 80

bpf (2) System Calls Manual bpf (2)

The following program types are supported:

BPF_PROG_TYPE_SOCKET_FILTER (since Linux 3.19)
Currently, the set of functions for BPF_PROG_TYPE_SOCKET_FILTERis:

bpf _map lookup _elem(map_fd, void *key)
/* look up key in a map_fd */

bpf _map update_elem(map_fd, void *key, void *value)
/* update key/value */

bpf _map_delete_elem(map_fd, void *key)
/* delete key 1n a map_fd */

The bpf_context argument is a pointer to a struct __sk_buff.

BPF_PROG_TYPE_KPROBE (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_CLS (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_ACT (since Linux 4.1)
[To be documented]

Events
Once a program is loaded, it can be attached to an event. Various kernel subsystems
have different ways to do so.

Since Linux 3.19, the following call will attach the program prog_fd to the socket
sockfd, which was created by an earlier call to socket(2):

setsockopt(sockfd, SOL_SOCKET, SO _ATTACH_BPF,
&prog_fd, sizeof(prog_fd));

Since Linux 4.1, the following call may be used to attach the eBPF program referred to
by the file descriptor prog_fd to a perf event file descriptor, event_fd, that was created
by a previous call to perf_event_open(2):

ioctl(event_fd, PERF_EVENT_IOC_SET BPF, prog_fd);

RETURN VALUE
For a successful call, the return value depends on the operation:

BPF_MAP_CREATE
The new file descriptor associated with the eBPF map.

BPF_PROG_LOAD
The new file descriptor associated with the eBPF program.

All other commands
Zero.

On error, —1 is returned, and errno is set to indicate the error.

ERRORS
E2BIG
The eBPF program is too large or a map reached the max_entries limit (maxi-
mum number of elements).

Linux man-pages 6.8 2024-05-02 81

bpf (2) System Calls Manual bpf (2)

EACCES

For BPF_PROG_LOAD, even though all program instructions are valid, the
program has been rejected because it was deemed unsafe. This may be because
it may have accessed a disallowed memory region or an uninitialized stack/regis-
ter or because the function constraints don’t match the actual types or because
there was a misaligned memory access. In this case, it is recommended to call
bpf() again with log_level = 1 and examine log_buf for the specific reason pro-
vided by the verifier.

EAGAIN
For BPF_PROG_LOAD, indicates that needed resources are blocked. This
happens when the verifier detects pending signals while it is checking the valid-
ity of the bpf program. In this case, just call bpf() again with the same parame-
ters.

EBADF
fd is not an open file descriptor.

EFAULT
One of the pointers (key or value or log_buf or insns) is outside the accessible
address space.

EINVAL
The value specified in cmd is not recognized by this kernel.

EINVAL
For BPF_MAP_CREATE, either map_type or attributes are invalid.

EINVAL
For BPF_MAP_* ELEM commands, some of the fields of union bpf_attr that
are not used by this command are not set to zero.

EINVAL
For BPF_PROG_LOAD, indicates an attempt to load an invalid program. eBPF
programs can be deemed invalid due to unrecognized instructions, the use of re-
served fields, jumps out of range, infinite loops or calls of unknown functions.

ENOENT
For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indi-
cates that the element with the given key was not found.

ENOMEM
Cannot allocate sufficient memory.

EPERM
The call was made without sufficient privilege (without the CAP_SYS_ADMIN
capability).

STANDARDS

Linux.

HISTORY
Linux 3.18.

Linux man-pages 6.8 2024-05-02 82

bpf (2) System Calls Manual bpf (2)

NOTES
Prior to Linux 4.4, all bpf() commands require the caller to have the CAP_SYS_AD-
MIN capability. From Linux 4.4 onwards, an unprivileged user may create limited pro-
grams of type BPF_PROG_TYPE_SOCKET_FILTER and associated maps. How-
ever they may not store kernel pointers within the maps and are presently limited to the
following helper functions:

* get_random

e get_smp_processor_id
e tail_call

» ktime_get_ns

Unprivileged access may be blocked by writing the value 1 to the file /proc/sys/ker-
nel/unprivileged_bpf_disabled.

eBPF objects (maps and programs) can be shared between processes. For example, after
fork(2), the child inherits file descriptors referring to the same eBPF objects. In addi-
tion, file descriptors referring to eBPF objects can be transferred over UNIX domain
sockets. File descriptors referring to eBPF objects can be duplicated in the usual way,
using dup(2) and similar calls. An eBPF object is deallocated only after all file descrip-
tors referring to the object have been closed.

eBPF programs can be written in a restricted C that is compiled (using the clang com-
piler) into eBPF bytecode. Various features are omitted from this restricted C, such as
loops, global variables, variadic functions, floating-point numbers, and passing struc-
tures as function arguments. Some examples can be found in the samples/bpf/*_kern.c
files in the kernel source tree.

The kernel contains a just-in-time (JIT) compiler that translates eBPF bytecode into na-
tive machine code for better performance. Before Linux 4.15, the JIT compiler is dis-
abled by default, but its operation can be controlled by writing one of the following inte-
ger strings to the file /proc/sys/net/core/bpf_jit_enable:

0 Disable JIT compilation (default).
1 Normal compilation.

2 Debugging mode. The generated opcodes are dumped in hexadecimal into the
kernel log. These opcodes can then be disassembled using the program
tools/net/bpf_jit_disasm.c provided in the kernel source tree.

Since Linux 4.15, the kernel may be configured with the CONFIG_BPF_JIT_AL-
WAYS_ON option. In this case, the JIT compiler is always enabled, and the bpf_jit_en-
able is initialized to 1 and is immutable. (This kernel configuration option was provided
as a mitigation for one of the Spectre attacks against the BPF interpreter.)

The JIT compiler for eBPF is currently available for the following architectures:

» x86-64 (since Linux 3.18; cBPF since Linux 3.0);
ARMS32 (since Linux 3.18; cBPF since Linux 3.4);

» SPARC 32 (since Linux 3.18; cBPF since Linux 3.5);
ARM-64 (since Linux 3.18);

» 5390 (since Linux 4.1; cBPF since Linux 3.7);

Linux man-pages 6.8 2024-05-02 83

bpf (2) System Calls Manual bpf (2)

» PowerPC 64 (since Linux 4.8; cBPF since Linux 3.1);
» SPARC 64 (since Linux 4.12);

» x86-32 (since Linux 4.18);

* MIPS 64 (since Linux 4.18; cBPF since Linux 3.16);
* riscv (since Linux 5.1).

EXAMPLES
/* bpf+sockets example:

* 1. create array map of 256 elements

* 2. load program that counts number of packets received

* rO = skb—>data[ETH_HLEN + offsetof(struct iphdr, protocol)]
* map[ro]++

* 3. attach prog_fd to raw socket via setsockopt()

* 4. print number of received TCP/UDP packets every second

*/

int

main(int argc, char *argv[])

{

int sock, map_fd, prog_fd, key;
long long value = 0, tcp_cnt, udp_cnt;

map_Tfd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key),
sizeof(value), 256);
if (map_fd < 0) {
printf("'failed to create map "%s"\n", strerror(errno));
/* likely not run as root */

return 1;
+
struct bpf_insn prog[] = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG 1), /* r6 =rl */
BPF_LD ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)
/* rO = ip—>proto */
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_O, -4),
/* *(u32 *(fp - 4) = r0 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* r2 = fp */
BPF_ALU64 IMM(BPF_ADD, BPF_REG 2, -4), /*r2 =r2 -4 *
BPF_LD_MAP_FD(BPF_REG_1, map_fd), /* rl = map_¥fd */
BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),
/* rO = map_lookup(rl, r2) */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_O, 0, 2),
/* if (rO == 0) goto pc+2 */
BPF_MOV64_IMM(BPF_REG_1, 1), /*rl =1%*/
BPF_XADD(BPF_DW, BPF_REG_0, BPF REG 1, 0, 0),
/* lock *(u64 *) rO +=rl1 */
BPF_MOV64_IMM(BPF_REG_0O, 0), /* rO = 0 */
BPF_EXIT_INSNQ), /* return rO */
s

Linux man-pages 6.8 2024-05-02 84

bpf (2) System Calls Manual bpf (2)

prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog,
sizeof(prog) / sizeof(prog[0]), "GPL™);

sock = open_raw_sock('10™);

assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd,
sizeof(prog_fd)) == 0);

for (G5) {
key = IPPROTO_TCP;
assert(bpf_lookup_elem(map_fd, &key, &tcp cnt) == 0);
key = IPPROTO_UDP;
assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);
printf(""TCP %11d UDP %l1l1d packets\n', tcp_cnt, udp_cnt);
sleep(1);

}

return O;
}

Some complete working code can be found in the samples/bpf directory in the kernel
source tree.

SEE ALSO
seccomp(2), bpf-helpers(7), socket(7), tc(8), tc-bpf (8)

Both classic and extended BPF are explained in the kernel source file Documenta-
tion/networking/filter.txt.

Linux man-pages 6.8 2024-05-02 85

brk(2) System Calls Manual brk(2)

NAME

brk, sbrk — change data segment size
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int brk(void *addr);

void *sbrk(intptr_t increment);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

brk(), sbrk():
Since glibc 2.19:
_DEFAULT_SOURCE
|| (_XOPEN_SOURCE >=500) &&
I (_POSIX_C_SOURCE >=200112L))
From glibc 2.12 to glibc 2.19:
_BSD_SOURCE || _SVID_SOURCE
|| (_XOPEN_SOURCE >=500) &&
I (_POSIX_C_SOURCE >=200112L))
Before glibc 2.12:
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
brk() and sbrk() change the location of the program break, which defines the end of the
process’s data segment (i.e., the program break is the first location after the end of the
uninitialized data segment). Increasing the program break has the effect of allocating
memory to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the value specified by addr, when that value is
reasonable, the system has enough memory, and the process does not exceed its maxi-
mum data size (see setrlimit(2)).

sbrk() increments the program’s data space by increment bytes. Calling sbrk() with an
increment of O can be used to find the current location of the program break.

RETURN VALUE
On success, brk() returns zero. On error, =1 is returned, and errno is set to ENOMEM.

On success, sbrk() returns the previous program break. (If the break was increased,
then this value is a pointer to the start of the newly allocated memory). On error,
(void *) —1 is returned, and errno is set to ENOMEM.

STANDARDS
None.

HISTORY
4.3BSD; SUSv1, marked LEGACY in SUSv2, removed in POSIX.1-2001.

NOTES
Avoid using brk() and sbrk(): the malloc(3) memory allocation package is the portable
and comfortable way of allocating memory.

Various systems use various types for the argument of sbrk(). Common are int, ssize_t,

Linux man-pages 6.8 2024-05-02 86

brk(2) System Calls Manual brk(2)

ptrdiff_t, intptr_t.

C library/kernel differences

The return value described above for brk() is the behavior provided by the glibc wrap-
per function for the Linux brk() system call. (On most other implementations, the re-
turn value from brk() is the same; this return value was also specified in SUSv2.) How-
ever, the actual Linux system call returns the new program break on success. On failure,
the system call returns the current break. The glibc wrapper function does some work
(i.e., checks whether the new break is less than addr) to provide the 0 and -1 return val-
ues described above.

On Linux, sbrk() is implemented as a library function that uses the brk() system call,
and does some internal bookkeeping so that it can return the old break value.

SEE ALSO
execve(2), getrlimit(2), end(3), malloc(3)

Linux man-pages 6.8 2024-05-02 87

cacheflush(2) System Calls Manual cacheflush(2)

NAME

cacheflush — flush contents of instruction and/or data cache
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/cachectl.h>
int cacheflush(void addr[.nbytes], int nbytes, int cache);

Note: On some architectures, there is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
cacheflush() flushes the contents of the indicated cache(s) for the user addresses in the
range addr to (addr+nbytes—1). cache may be one of:

ICACHE
Flush the instruction cache.

DCACHE
Write back to memory and invalidate the affected valid cache lines.

BCACHE
Same as (ICACHE|DCACHE).

RETURN VALUE

cacheflush() returns 0 on success. On error, it returns —1 and sets errno to indicate the
error.

ERRORS
EFAULT
Some or all of the address range addr to (addr+nbytes—1) is not accessible.

EINVAL
cache is not one of ICACHE, DCACHE, or BCACHE (but see BUGS).

VERSIONS
cacheflush() should not be used in programs intended to be portable. On Linux, this
call first appeared on the MIPS architecture, but nowadays, Linux provides a
cacheflush() system call on some other architectures, but with different arguments.

Architecture-specific variants
glibc provides a wrapper for this system call, with the prototype shown in SYNOPSIS,
for the following architectures: ARC, CSKY, MIPS, and N10S2.

On some other architectures, Linux provides this system call, with different arguments:

M68K:
int cacheflush(unsigned long addr, int scope, int cache,
unsigned long len);

SH:
int cacheflush(unsigned long addr, unsigned long len, int op);

NDS32:
int cacheflush(unsigned int start, unsigned int end, int cache);

On the above architectures, glibc does not provide a wrapper for this system call; call it

Linux man-pages 6.8 2024-05-02 88

cacheflush(2) System Calls Manual cacheflush(2)

using syscall(2).

GCC alternative
Unless you need the finer grained control that this system call provides, you probably
want to use the GCC built-in function __ builtin___ clear_cache(), which provides a
portable interface across platforms supported by GCC and compatible compilers:

void _ buirltin clear_cache(void *begin, void *end);
On platforms that don’t require instruction cache flushes, _ builtin___ clear_cache()
has no effect.

Note: On some GCC-compatible compilers, the prototype for this built-in function uses
char * instead of void * for the parameters.

STANDARDS
Historically, this system call was available on all MIPS UNIX variants including
RISC/os, IRIX, Ultrix, NetBSD, OpenBSD, and FreeBSD (and also on some non-UNIX
MIPS operating systems), so that the existence of this call in MIPS operating systems is
a de-facto standard.

BUGS
Linux kernels older than Linux 2.6.11 ignore the addr and nbytes arguments, making
this function fairly expensive. Therefore, the whole cache is always flushed.

This function always behaves as if BCACHE has been passed for the cache argument
and does not do any error checking on the cache argument.

Linux man-pages 6.8 2024-05-02 89

capget(2) System Calls Manual capget(2)

NAME

capget, capset — set/get capabilities of thread(s)
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/capability.h> /* Definition of CAP_* and

_LINUX_CAPABILITY_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_capget, cap_user_header_t hdrp,
cap_user_data_t datap);

int syscall(SYS_capset, cap_user_header_t hdrp,
const cap_user_data_t datap);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These two system calls are the raw kernel interface for getting and setting thread capa-
bilities. Not only are these system calls specific to Linux, but the kernel API is likely to
change and use of these system calls (in particular the format of the cap_user_* t types)
is subject to extension with each kernel revision, but old programs will keep working.

The portable interfaces are cap_set proc(3) and cap_get proc(3); if possible, you
should use those interfaces in applications; see NOTES.

Current details
Now that you have been warned, some current kernel details. The structures are defined

as follows.
#define _LINUX_CAPABILITY _VERSION 1 0x19980330
#define _LINUX CAPABILITY U32S 1 1

/* V2 added in Linux 2.6.25; deprecated */
#define _LINUX_CAPABILITY_VERSION_ 2 0x20071026
#define _LINUX_CAPABILITY_U32S 2 2

/* V3 added in Linux 2.6.26 */
#define _LINUX_CAPABILITY_VERSION 3 0x20080522
#define LINUX CAPABILITY U32S 3 2

typedef struct __ user_cap_header_struct {
__u32 version;
int pid;

} *cap_user_header_t;

typedef struct _ user_cap_data_struct {
__u32 effective;

_u32 permitted;
__u32 inheritable;

Linux man-pages 6.8 2024-05-02 90

capget(2) System Calls Manual capget(2)

} *cap_user_data_t;

The effective, permitted, and inheritable fields are bit masks of the capabilities defined
in capabilities(7). Note that the CAP_* values are bit indexes and need to be bit-shifted
before ORing into the bit fields. To define the structures for passing to the system call,
you have to use the struct _ user cap_header struct and struct
__user_cap_data_struct names because the typedefs are only pointers.

Kernels prior to Linux 2.6.25 prefer 32-bit capabilities with version _LINUX_CAPA-
BILITY_VERSION_ 1. Linux 2.6.25 added 64-bit capability sets, with version
_LINUX_CAPABILITY_VERSION_2. There was, however, an API glitch, and
Linux 2.6.26 added _LINUX_CAPABILITY_VERSION_3 to fix the problem.

Note that 64-bit capabilities use datap[0] and datap[1], whereas 32-bit capabilities use
only datap[0].

On kernels that support file capabilities (VFS capabilities support), these system calls
behave slightly differently. This support was added as an option in Linux 2.6.24, and
became fixed (nonoptional) in Linux 2.6.33.

For capget() calls, one can probe the capabilities of any process by specifying its
process ID with the hdrp—>pid field value.

For details on the data, see capabilities(7).

With VES capabilities support
VFS capabilities employ a file extended attribute (see xattr(7)) to allow capabilities to be
attached to executables. This privilege model obsoletes kernel support for one process
asynchronously setting the capabilities of another. That is, on kernels that have VFS ca-
pabilities support, when calling capset(), the only permitted values for hdrp—>pid are 0
or, equivalently, the value returned by gettid(2).

Without VFS capabilities support
On older kernels that do not provide VFS capabilities support capset() can, if the caller
has the CAP_SETPCAP capability, be used to change not only the caller’s own capabil-
ities, but also the capabilities of other threads. The call operates on the capabilities of
the thread specified by the pid field of hdrp when that is nonzero, or on the capabilities
of the calling thread if pid is 0. If pid refers to a single-threaded process, then pid can
be specified as a traditional process ID; operating on a thread of a multithreaded process
requires a thread ID of the type returned by gettid(2). For capset(), pid can also be: -1,
meaning perform the change on all threads except the caller and init(1); or a value less
than -1, in which case the change is applied to all members of the process group whose
ID is —pid.
RETURN VALUE

On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

The calls fail with the error EINVAL, and set the version field of hdrp to the kernel pre-
ferred value of _LINUX_ CAPABILITY_VERSION_? when an unsupported version
value is specified. In this way, one can probe what the current preferred capability revi-
sion is.

Linux man-pages 6.8 2024-05-02 91

capget(2) System Calls Manual capget(2)

ERRORS
EFAULT
Bad memory address. hdrp must not be NULL. datap may be NULL only
when the user is trying to determine the preferred capability version format sup-
ported by the kernel.

EINVAL
One of the arguments was invalid.

EPERM
An attempt was made to add a capability to the permitted set, or to set a capabil-
ity in the effective set that is not in the permitted set.

EPERM
An attempt was made to add a capability to the inheritable set, and either:

» that capability was not in the caller’s bounding set; or

» the capability was not in the caller’s permitted set and the caller lacked the
CAP_SETPCAP capability in its effective set.

EPERM

The caller attempted to use capset() to modify the capabilities of a thread other
than itself, but lacked sufficient privilege. For kernels supporting VFS capabili-
ties, this is never permitted. For kernels lacking VFS support, the CAP_SETP-
CAP capability is required. (A bug in kernels before Linux 2.6.11 meant that
this error could also occur if a thread without this capability tried to change its
own capabilities by specifying the pid field as a nonzero value (i.e., the value re-
turned by getpid(2)) instead of 0.)

ESRCH
No such thread.

STANDARDS
Linux.

NOTES
The portable interface to the capability querying and setting functions is provided by the
libcap library and is available here:
http://git.kernel.org/cgit/linux/kernel/git/morgan/libcap.git

SEE ALSO
clone(2), gettid(2), capabilities(7)

Linux man-pages 6.8 2024-05-02 92

http://git.kernel.org/cgit/linux/kernel/git/morgan/libcap.git

chdir(2) System Calls Manual chdir(2)

NAME

chdir, fchdir — change working directory
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int chdir(const char * path);
int fchdir(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchdir():
_XOPEN_SOURCE >=500
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc up to and including 2.19: */ _BSD_SOURCE

DESCRIPTION
chdir() changes the current working directory of the calling process to the directory
specified in path.

fchdir() is identical to chdir(); the only difference is that the directory is given as an
open file descriptor.

RETURN VALUE

On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors for
chdir() are listed below:

EACCES
Search permission is denied for one of the components of path. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The directory specified in path does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of path is not a directory.

The general errors for fchdir() are listed below:

Linux man-pages 6.8 2024-05-02 93

chdir(2) System Calls Manual chdir(2)

EACCES
Search permission was denied on the directory open on fd.

EBADF
fd is not a valid file descriptor.

ENOTDIR
fd does not refer to a directory.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

NOTES

The current working directory is the starting point for interpreting relative pathnames
(those not starting with /).

A child process created via fork(2) inherits its parent’s current working directory. The
current working directory is left unchanged by execve(2).

SEE ALSO
chroot(2), getcwd(3), path_resolution(7)

Linux man-pages 6.8 2024-05-02 94

chmod(2) System Calls Manual chmod(2)

NAME

chmod, fchmod, fchmodat — change permissions of a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/stat.h>

int chmod(const char * pathname, mode_t mode);
int fchmod(int fd, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fchmodat(int dirfd, const char * pathname, mode_t mode, int flags);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchmod():
Since glibc 2.24:
_POSIX_C_SOURCE >=199309L
glibc 2.19 to glibc 2.23
_POSIX_C_SOURCE
glibc 2.16 to glibc 2.19:
_BSD_SOURCE || _POSIX_C_SOURCE
glibc 2.12 to glibc 2.16:
_BSD_SOURCE || _XOPEN_SOURCE >= 500
|| _POSIX_C_SOURCE >= 200809L
glibc 2.11 and earlier:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

fchmodat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
The chmod() and fchmod() system calls change a file’s mode bits. (The file mode con-
sists of the file permission bits plus the set-user-ID, set-group-1D, and sticky bits.)
These system calls differ only in how the file is specified:

e chmod() changes the mode of the file specified whose pathname is given in path-
name, which is dereferenced if it is a symbolic link.

« fchmod() changes the mode of the file referred to by the open file descriptor fd.

The new file mode is specified in mode, which is a bit mask created by ORing together
zero or more of the following:

S_ISUID (04000) set-user-1D (set process effective user ID on execve(2))

S_ISGID (02000) set-group-ID (set process effective group ID on execve(2); manda-
tory locking, as described in fcntl(2); take a new file’s group from
parent directory, as described in chown(2) and mkdir(2))

Linux man-pages 6.8 2024-05-02 95

chmod(2) System Calls Manual chmod(2)

S_ISVTX (01000) sticky bit (restricted deletion flag, as described in unlink(2))
S IRUSR (00400) read by owner
S _IWUSR (00200) write by owner

S_IXUSR (00100) execute/search by owner (“search” applies for directories, and
means that entries within the directory can be accessed)

S_IRGRP (00040) read by group

S_IWGRP (00020)
write by group

S _IXGRP (00010) execute/search by group
S _IROTH (00004) read by others

S_IWOTH (00002)
write by others

S IXOTH (00001) execute/search by others

The effective UID of the calling process must match the owner of the file, or the process
must be privileged (Linux: it must have the CAP_FOWNER capability).

If the calling process is not privileged (Linux: does not have the CAP_FSETID capabil-
ity), and the group of the file does not match the effective group ID of the process or one
of its supplementary group IDs, the S_ISGID bit will be turned off, but this will not
cause an error to be returned.

As a security measure, depending on the filesystem, the set-user-ID and set-group-ID
execution bits may be turned off if a file is written. (On Linux, this occurs if the writing
process does not have the CAP_FSETID capability.) On some filesystems, only the su-
peruser can set the sticky bit, which may have a special meaning. For the sticky bit, and
for set-user-1D and set-group-1D bits on directories, see inode(7).

On NFS filesystems, restricting the permissions will immediately influence already open
files, because the access control is done on the server, but open files are maintained by
the client. Widening the permissions may be delayed for other clients if attribute
caching is enabled on them.

fchmodat()
The fchmodat() system call operates in exactly the same way as chmod(), except for
the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current working di-
rectory of the calling process, as is done by chmod() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like chmod())

If pathname is absolute, then dirfd is ignored.
flags can either be 0, or include the following flag:

AT _SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead operate on the link
itself. This flag is not currently implemented.

Linux man-pages 6.8 2024-05-02 96

chmod(2) System Calls Manual chmod(2)

See openat(2) for an explanation of the need for fchmodat().

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chmod() are listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchmod()) The file descriptor fd is not valid.

EBADF
(fchmodat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid
file descriptor.

EFAULT
pathname points outside your accessible address space.

EINVAL
(fchmodat()) Invalid flag specified in flags.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(fchmodat()) pathname is relative and dirfd is a file descriptor referring to a file
other than a directory.

ENOTSUP
(fchmodat()) flags specified AT_SYMLINK_NOFOLLOW, which is not sup-
ported.

EPERM
The effective UID does not match the owner of the file, and the process is not
privileged (Linux: it does not have the CAP_FOWNER capability).

Linux man-pages 6.8 2024-05-02 97

chmod(2) System Calls Manual chmod(2)

EPERM
The file is marked immutable or append-only. (See ioctl _iflags(2).)

EROFS
The named file resides on a read-only filesystem.

VERSIONS
C library/kernel differences
The GNU C library fchmodat() wrapper function implements the POSIX-specified in-
terface described in this page. This interface differs from the underlying Linux system
call, which does not have a flags argument.

glibc notes
On older kernels where fchmodat() is unavailable, the glibc wrapper function falls back
to the use of chmod(). When pathname is a relative pathname, glibc constructs a path-
name based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
POSIX.1-2008.

HISTORY
chmod()
fchmod()
4.4BSD, SVr4, POSIX.1-2001.

fchmodat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

SEE ALSO
chmod(1), chown(2), execve(2), open(2), stat(2), inode(7), path_resolution(7),
symlink(7)

Linux man-pages 6.8 2024-05-02 98

chown(2) System Calls Manual chown(2)

NAME

chown, fchown, Ichown, fchownat — change ownership of a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int chown(const char * pathname, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int Ichown(const char * pathname, uid_t owner, gid_t group);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int fchownat(int dirfd, const char * pathname,
uid_t owner, gid_t group, int flags);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

fchown(), Ichown():
* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| _XOPEN_SOURCE >= 500
|| /* glibc <= 2.19: */ _BSD_SOURCE

fchownat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
These system calls change the owner and group of a file. The chown(), fchown(), and
Ichown() system calls differ only in how the file is specified:

» chown() changes the ownership of the file specified by pathname, which is derefer-
enced if it is a symbolic link.

» fchown() changes the ownership of the file referred to by the open file descriptor fd.
» Ichown() is like chown(), but does not dereference symbolic links.

Only a privileged process (Linux: one with the CAP_CHOWN capability) may change
the owner of a file. The owner of a file may change the group of the file to any group of
which that owner is a member. A privileged process (Linux: with CAP_CHOWN) may
change the group arbitrarily.

If the owner or group is specified as —1, then that ID is not changed.

When the owner or group of an executable file is changed by an unprivileged user, the
S_ISUID and S_ISGID mode bits are cleared. POSIX does not specify whether this
also should happen when root does the chown(); the Linux behavior depends on the ker-
nel version, and since Linux 2.2.13, root is treated like other users. In case of a non-
group-executable file (i.e., one for which the S_IXGRP bit is not set) the S_ISGID bit
indicates mandatory locking, and is not cleared by a chown().

When the owner or group of an executable file is changed (by any user), all capability

Linux man-pages 6.8 2024-05-02 99

chown(2) System Calls Manual chown(2)

sets for the file are cleared.

fchownat()
The fchownat() system call operates in exactly the same way as chown(), except for the
differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current working di-
rectory of the calling process, as is done by chown() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like chown())

If pathname is absolute, then dirfd is ignored.

The flags argument is a bit mask created by ORing together 0 or more of the following
values;

AT_EMPTY_PATH (since Linux 2.6.39)
If pathname is an empty string, operate on the file referred to by dirfd (which
may have been obtained using the open(2) O_PATH flag). In this case, dirfd
can refer to any type of file, not just a directory. If dirfd is AT_FDCWD, the
call operates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead operate on the link
itself, like Ichown(). (By default, fchownat() dereferences symbolic links, like
chown().)

See openat(2) for an explanation of the need for fchownat().

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chown() are listed below.

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchown()) fd is not a valid open file descriptor.

EBADF
(fchownat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid
file descriptor.

EFAULT
pathname points outside your accessible address space.

EINVAL
(fchownat()) Invalid flag specified in flags.

Linux man-pages 6.8 2024-05-02 100

chown(2) System Calls Manual chown(2)

EIO (fchown()) A low-level 1/0 error occurred while modifying the inode.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(fchownat()) pathname is relative and dirfd is a file descriptor referring to a file
other than a directory.

EPERM
The calling process did not have the required permissions (see above) to change
owner and/or group.

EPERM
The file is marked immutable or append-only. (See ioctl_iflags(2).)

EROFS
The named file resides on a read-only filesystem.

VERSIONS

The 4.4BSD version can be used only by the superuser (that is, ordinary users cannot
give away files).

STANDARDS
POSIX.1-2008.

HISTORY

chown()

fchown()

Ichown()
4.4BSD, SVr4, POSIX.1-2001.

fchownat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Ownership of new files
When a new file is created (by, for example, open(2) or mkdir(2)), its owner is made the
same as the filesystem user ID of the creating process. The group of the file depends on
a range of factors, including the type of filesystem, the options used to mount the filesys-
tem, and whether or not the set-group-ID mode bit is enabled on the parent directory. If
the filesystem supports the —o grpid (or, synonymously -o bsdgroups) and —o nogrpid
(or, synonymously -0 sysvgroups) mount(8) options, then the rules are as follows:

Linux man-pages 6.8 2024-05-02 101

chown(2) System Calls Manual chown(2)

» If the filesystem is mounted with -o grpid, then the group of a new file is made the
same as that of the parent directory.

» If the filesystem is mounted with —o nogrpid and the set-group-ID bit is disabled on
the parent directory, then the group of a new file is made the same as the process’s
filesystem GID.

» If the filesystem is mounted with —o nogrpid and the set-group-ID bit is enabled on
the parent directory, then the group of a new file is made the same as that of the par-
ent directory.

As at Linux 4.12, the —o grpid and —o nogrpid mount options are supported by ext2,
ext3, ext4, and XFS. Filesystems that don’t support these mount options follow the
—0 nogrpid rules.

glibc notes
On older kernels where fchownat() is unavailable, the glibc wrapper function falls back
to the use of chown() and Ichown(). When pathname is a relative pathname, glibc con-
structs a pathname based on the symbolic link in /proc/self/fd that corresponds to the
dirfd argument.

NFS
The chown() semantics are deliberately violated on NFS filesystems which have UID
mapping enabled. Additionally, the semantics of all system calls which access the file
contents are violated, because chown() may cause immediate access revocation on al-
ready open files. Client side caching may lead to a delay between the time where own-
ership have been changed to allow access for a user and the time where the file can actu-
ally be accessed by the user on other clients.

Historical details
The original Linux chown(), fchown(), and Ichown() system calls supported only 16-bit
user and group IDs. Subsequently, Linux 2.4 added chown32(), fchown32(), and
Ichown32(), supporting 32-bit IDs. The glibc chown(), fchown(), and Ichown() wrap-
per functions transparently deal with the variations across kernel versions.

Before Linux 2.1.81 (except 2.1.46), chown() did not follow symbolic links. Since
Linux 2.1.81, chown() does follow symbolic links, and there is a new system call
Ichown() that does not follow symbolic links. Since Linux 2.1.86, this new call (that
has the same semantics as the old chown()) has got the same syscall number, and
chown() got the newly introduced number.

EXAMPLES
The following program changes the ownership of the file named in its second command-
line argument to the value specified in its first command-line argument. The new owner
can be specified either as a numeric user ID, or as a username (which is converted to a
user ID by using getpwnam(3) to perform a lookup in the system password file).

Program source
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

Linux man-pages 6.8 2024-05-02 102

chown(2) System Calls Manual chown(2)

int
main(int argc, char *argv[])
{
char *endptr;
uid_t uid;

struct passwd *pwd;

if (argc = 3 || argv[1][O0] == *\0") {
fprintf(stderr, "%s <owner> <file>\n", argv[0]):;
exit(EXIT_FAILURE);

+
uid = strtol(argv[1l], &endptr, 10); /* Allow a numeric string */

it (Cendptr = "\0") { /* Was not pure numeric string */
pwd = getpwnam(argv[1l]); /* Try getting UID for username */
if (pwd == NULL) {
perror(‘'getpwnam') ;
exit(EXIT_FAILURE);

}

uitd = pwd->pw_uid;

}

it (chown(argv[2], uid, -1) == -1) {
perror(*'chown™);
ex1t(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
¥

SEE ALSO
chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

Linux man-pages 6.8 2024-05-02 103

chroot(2) System Calls Manual chroot(2)

NAME

chroot — change root directory
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int chroot(const char * path);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

chroot():
Since glibc 2.2.2:
_XOPEN_SOURCE && ! (_ POSIX_C_SOURCE >= 200112L)
|| /* Since glibc 2.20: */ _DEFAULT_SOURCE
|| /* glibc <=2.19: */ _BSD_SOURCE
Before glibc 2.2.2:
none

DESCRIPTION
chroot() changes the root directory of the calling process to that specified in path. This
directory will be used for pathnames beginning with /. The root directory is inherited by
all children of the calling process.

Only a privileged process (Linux: one with the CAP_SYS_CHROOT capability in its
user namespace) may call chroot().

This call changes an ingredient in the pathname resolution process and does nothing
else. In particular, it is not intended to be used for any kind of security purpose, neither
to fully sandbox a process nor to restrict filesystem system calls. In the past, chroot()
has been used by daemons to restrict themselves prior to passing paths supplied by un-
trusted users to system calls such as open(2). However, if a folder is moved out of the
chroot directory, an attacker can exploit that to get out of the chroot directory as well.
The easiest way to do that is to chdir(2) to the to-be-moved directory, wait for it to be
moved out, then open a path like ../../../etc/passwd.

A slightly trickier variation also works under some circumstances if chdir(2) is not per-
mitted. If a daemon allows a "chroot directory” to be specified, that usually means that
if you want to prevent remote users from accessing files outside the chroot directory, you
must ensure that folders are never moved out of it.

This call does not change the current working directory, so that after the call '.' can be
outside the tree rooted at /. In particular, the superuser can escape from a “chroot jail"
by doing:

mkdir foo; chroot foo; cd ..

This call does not close open file descriptors, and such file descriptors may allow access
to files outside the chroot tree.

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

Linux man-pages 6.8 2024-05-02 104

chroot(2) System Calls Manual chroot(2)

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors are
listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of path is not a directory.

EPERM
The caller has insufficient privilege.

STANDARDS
None.

HISTORY
SVr4, 4.4BSD, SUSv2 (marked LEGACY). This function is not part of POSIX.1-2001.

NOTES
A child process created via fork(2) inherits its parent’s root directory. The root directory
is left unchanged by execve(2).

The magic symbolic link, /proc/ pid/root, can be used to discover a process’s root direc-
tory; see proc(5) for details.

FreeBSD has a stronger jail() system call.

SEE ALSO
chroot(1), chdir(2), pivot_root(2), path_resolution(7), switch_root(8)

Linux man-pages 6.8 2024-05-02 105

clock_getres(2) System Calls Manual clock_getres(2)

NAME

clock_getres, clock_gettime, clock_settime — clock and time functions

LIBRARY

Standard C library (libc, —Ic), since glibc 2.17
Before glibc 2.17, Real-time library (librt, —Irt)

SYNOPSIS

#include <time.h>
int clock_getres(clockid_t clockid, struct timespec *_Nullable res);

int clock_gettime(clockid_t clockid, struct timespec *tp);
int clock_settime(clockid_t clockid, const struct timespec *tp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_getres(), clock_gettime(), clock_settime():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION

The function clock_getres() finds the resolution (precision) of the specified clock
clockid, and, if res is non-NULL, stores it in the struct timespec pointed to by res. The
resolution of clocks depends on the implementation and cannot be configured by a par-
ticular process. If the time value pointed to by the argument tp of clock_settime() is not
a multiple of res, then it is truncated to a multiple of res.

The functions clock_gettime() and clock_settime() retrieve and set the time of the spec-
ified clock clockid.

The res and tp arguments are timespec(3) structures.

The clockid argument is the identifier of the particular clock on which to act. A clock
may be system-wide and hence visible for all processes, or per-process if it measures
time only within a single process.

All implementations support the system-wide real-time clock, which is identified by
CLOCK_REALTIME. Its time represents seconds and nanoseconds since the Epoch.
When its time is changed, timers for a relative interval are unaffected, but timers for an
absolute point in time are affected.

More clocks may be implemented. The interpretation of the corresponding time values
and the effect on timers is unspecified.

Sufficiently recent versions of glibc and the Linux kernel support the following clocks:

CLOCK_ REALTIME

A settable system-wide clock that measures real (i.e., wall-clock) time. Setting
this clock requires appropriate privileges. This clock is affected by discontinu-
ous jumps in the system time (e.g., if the system administrator manually changes
the clock), and by frequency adjustments performed by NTP and similar applica-
tions via adjtime(3), adjtimex(2), clock adjtime(2), and ntp_adjtime(3). This
clock normally counts the number of seconds since 1970-01-01 00:00:00 Coor-
dinated Universal Time (UTC) except that it ignores leap seconds; near a leap
second it is typically adjusted by NTP to stay roughly in sync with UTC.

Linux man-pages 6.8 2024-05-02 106

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_REALTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_REALTIME, but not settable. See timer_create(2) for further
details.

CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_REALTIME. This clock is not
settable. Use when you need very fast, but not fine-grained timestamps. Re-
quires per-architecture support, and probably also architecture support for this
flag in the vdso(7).

CLOCK_TAI (since Linux 3.10; Linux-specific)
A nonsettable system-wide clock derived from wall-clock time but counting leap
seconds. This clock does not experience discontinuities or frequency adjust-
ments caused by inserting leap seconds as CLOCK_REALTIME does.

The acronym TAI refers to International Atomic Time.

CLOCK_MONOTONIC
A nonsettable system-wide clock that represents monotonic time since—as de-
scribed by POSIX—"some unspecified point in the past”. On Linux, that point
corresponds to the number of seconds that the system has been running since it
was booted.

The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in
the system time (e.g., if the system administrator manually changes the clock),
but is affected by frequency adjustments. This clock does not count time that the
system is suspended. All CLOCK_MONOTONIC variants guarantee that the
time returned by consecutive calls will not go backwards, but successive calls
may—depending on the architecture—return identical (not-increased) time val-
ues.

CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_MONOTONIC. Use when you
need very fast, but not fine-grained timestamps. Requires per-architecture sup-
port, and probably also architecture support for this flag in the vdso(7).

CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)
Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-
based time that is not subject to frequency adjustments. This clock does not
count time that the system is suspended.

CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)
A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,
except that it also includes any time that the system is suspended. This allows
applications to get a suspend-aware monotonic clock without having to deal with
the complications of CLOCK_REALTIME, which may have discontinuities if
the time is changed using settimeofday(2) or similar.

CLOCK_BOOTTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_BOOTTIME. See timer_create(2) for further details.

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this process (i.e., CPU
time consumed by all threads in the process). On Linux, this clock is not

Linux man-pages 6.8 2024-05-02 107

clock_getres(2) System Calls Manual clock_getres(2)

settable.

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this thread. On Linux, this
clock is not settable.

Linux also implements dynamic clock instances as described below.

Dynamic clocks
In addition to the hard-coded System-V style clock IDs described above, Linux also sup-
ports POSIX clock operations on certain character devices. Such devices are called "dy-
namic" clocks, and are supported since Linux 2.6.39.

Using the appropriate macros, open file descriptors may be converted into clock IDs and
passed to clock_gettime(), clock_settime(), and clock_adjtime(2). The following ex-
ample shows how to convert a file descriptor into a dynamic clock ID.

#define CLOCKFD 3
#define FD_TO_CLOCKID(Ffd) ((~(clockid_t) (fd) << 3) | CLOCKFD)
#define CLOCKID_TO_FD(clk) ((unsigned int) ~((clk) >> 3))

struct timespec ts;
clockid_t clkid;
int fd;

fd = open(*'/dev/ptp0*”, O RDWR);
clkid = FD_TO_CLOCKID(Ffd);
clock_gettime(clkid, &ts);

RETURN VALUE
clock_gettime(), clock_settime(), and clock_getres() return O for success. On error, -1
is returned and errno is set to indicate the error.

ERRORS
EACCES
clock_settime() does not have write permission for the dynamic POSIX clock
device indicated.

EFAULT
tp points outside the accessible address space.

EINVAL
The clockid specified is invalid for one of two reasons. Either the System-V
style hard coded positive value is out of range, or the dynamic clock 1D does not
refer to a valid instance of a clock object.

EINVAL
(clock_settime()): tp.tv_sec is negative or tp.tv_nsec is outside the range [O,
999,999,999].

EINVAL
The clockid specified in a call to clock_settime() is not a settable clock.

EINVAL (since Linux 4.3)
A call to clock_settime() with a clockid of CLOCK_REALTIME attempted to
set the time to a value less than the current value of the

Linux man-pages 6.8 2024-05-02 108

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_MONOTONIC clock.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk _id has disappeared after its character device was opened.

ENOTSUP
The operation is not supported by the dynamic POSIX clock device specified.

EOVERFLOW
The timestamp would not fit in time_t range. This can happen if an executable
with 32-bit time_t is run on a 64-bit kernel when the time is 2038-01-19
03:14:08 UTC or later. However, when the system time is out of time_t range in
other situations, the behavior is undefined.

EPERM
clock_settime() does not have permission to set the clock indicated.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
clock_getres(), clock_gettime(), clock_settime() Thread safety | MT-Safe
VERSIONS

POSIX.1 specifies the following:

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall
have no effect on threads that are blocked waiting for a relative time service
based upon this clock, including the nanosleep() function; nor on the expiration
of relative timers based upon this clock. Consequently, these time services shall
expire when the requested relative interval elapses, independently of the new or
old value of the clock.

According to POSIX.1-2001, a process with "appropriate privileges” may set the
CLOCK _PROCESS CPUTIME_ID and CLOCK THREAD_CPUTIME_ID
clocks using clock_settime(). On Linux, these clocks are not settable (i.e., no process
has "appropriate privileges").

C library/kernel differences
On some architectures, an implementation of clock_gettime() is provided in the vdso(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SUSv2. Linux 2.6.

On POSIX systems on which these functions are available, the symbol
_POSIX_TIMERS is defined in <unistd.h> to a value greater than 0. POSIX.1-2008
makes these functions mandatory.

The symbols _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME,
_POSIX_THREAD_CPUTIME indicate that CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID are avail-
able. (See also sysconf(3).)

Linux man-pages 6.8 2024-05-02 109

clock_getres(2) System Calls Manual clock_getres(2)

Historical note for SMP systems
Before Linux added kernel support for CLOCK_PROCESS CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many plat-
forms using timer registers from the CPUs (TSC on i386, AR.ITC on Itanium). These
registers may differ between CPUs and as a consequence these clocks may return bogus
results if a process is migrated to another CPU.

If the CPUs in an SMP system have different clock sources, then there is no way to
maintain a correlation between the timer registers since each CPU will run at a slightly
different frequency. If that is the case, then clock getcpuclockid(0) will return
ENOENT to signify this condition. The two clocks will then be useful only if it can be
ensured that a process stays on a certain CPU.

The processors in an SMP system do not start all at exactly the same time and therefore
the timer registers are typically running at an offset. Some architectures include code
that attempts to limit these offsets on bootup. However, the code cannot guarantee to ac-
curately tune the offsets. glibc contains no provisions to deal with these offsets (unlike
the Linux Kernel). Typically these offsets are small and therefore the effects may be
negligible in most cases.

Since glibc 2.4, the wrapper functions for the system calls described in this page avoid
the abovementioned problems by employing the kernel implementation of
CLOCK_PROCESS CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID, on
systems that provide such an implementation (i.e., Linux 2.6.12 and later).

EXAMPLES
The program below demonstrates the use of clock_gettime() and clock_getres() with
various clocks. This is an example of what we might see when running the program:

$./clock _times x
CLOCK_REALTIME : 1585985459.446 (18356 days + 7h 30m 59s)

resolution: 0.000000001
CLOCK _TAI : 1585985496.447 (18356 days + 7h 31m 36s)
resolution: 0.000000001
CLOCK_MONOTONIC: 52395.722 (14h 33m 15s)
resolution: 0.000000001
CLOCK_BOOTTIME : 72691.019 (20h 11m 31s)
resolution: 0.000000001

Program source
/* clock _times.c

Licensed under GNU General Public License v2 or later.
*/
#define _XOPEN_SOURCE 600
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

Linux man-pages 6.8 2024-05-02 110

clock_getres(2) System Calls Manual clock_getres(2)
#define SECS_IN_DAY (24 * 60 * 60)

static void
displayClock(clockid_t clock, const char *name, bool showRes)
{

long days;

struct timespec ts;

if (clock gettime(clock, &ts) == -1) {
perror(‘'clock_gettime™);
exit(EXIT_FAILURE);

}

printf(""%-15s: %10jd.%031d ("', name,
(intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

days = ts.tv_sec / SECS_IN_DAY;
if (days > 0)
printf(""%ld days + "', days);

printf("'%2dh %2dm %2ds",
(int) (ts.tv_sec % SECS_IN_DAY) / 3600,
(int) (ts.tv_sec % 3600) / 60,
(int) ts.tv_sec % 60);

printf(C*)\n"");

iT (clock _getres(clock, &ts) == -1) {
perror(“'clock_getres™™);
exit(EXIT_FAILURE);

}

iT (showRes)
printf(" resolution: %10jd.%091d\n"",
(intmax_t) ts.tv_sec, ts.tv_nsec);

}

int
main(int argc, char *argv[])

{

bool showRes = argc > 1;

displayClock(CLOCK_REALTIME, "CLOCK_REALTIME'", showRes);
#ifdef CLOCK TAI

displayClock(CLOCK_TAIl, "CLOCK_TAI', showRes);
#endi T

displayClock(CLOCK_MONOTONIC, "CLOCK_ _MONOTONIC', showRes);
#ifdef CLOCK_ BOOTTIME

displayClock(CLOCK_BOOTTIME, 'CLOCK_BOOTTIME'"™, showRes);

Linux man-pages 6.8 2024-05-02 111

clock_getres(2) System Calls Manual clock_getres(2)

#endi T
exit(EXIT_SUCCESS);

}

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3), clock_getcpuclockid(3),
ctime(3), ftime(3), pthread_getcpuclockid(3), sysconf(3), timespec(3), time(7),
time_namespaces(7), vdso(7), hwclock(8)

Linux man-pages 6.8 2024-05-02 112

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

NAME

clock _nanosleep — high-resolution sleep with specifiable clock

LIBRARY

Standard C library (libc, —Ic), since glibc 2.17
Before glibc 2.17, Real-time library (librt, —Irt)

SYNOPSIS

#include <time.h>

int clock_nanosleep(clockid_t clockid, int flags,
const struct timespec *t,
struct timespec *_Nullable remain);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_nanosleep():
_POSIX_C_SOURCE >=200112L

DESCRIPTION

Like nanosleep(2), clock _nanosleep() allows the calling thread to sleep for an interval
specified with nanosecond precision. It differs in allowing the caller to select the clock
against which the sleep interval is to be measured, and in allowing the sleep interval to
be specified as either an absolute or a relative value.

The time values passed to and returned by this call are specified using timespec(3) struc-
tures.

The clockid argument specifies the clock against which the sleep interval is to be mea-
sured. This argument can have one of the following values:

CLOCK_ REALTIME
A settable system-wide real-time clock.

CLOCK_TAI (since Linux 3.10)
A system-wide clock derived from wall-clock time but counting leap seconds.

CLOCK_MONOTONIC
A nonsettable, monotonically increasing clock that measures time since some
unspecified point in the past that does not change after system startup.

CLOCK_BOOTTIME (since Linux 2.6.39)
Identical to CLOCK_MONOTONIC, except that it also includes any time that
the system is suspended.

CLOCK_PROCESS_CPUTIME_ID
A settable per-process clock that measures CPU time consumed by all threads in
the process.

See clock_getres(2) for further details on these clocks. In addition, the CPU clock IDs
returned by clock getcpuclockid(3) and pthread_getcpuclockid(3) can also be passed in
clockid.

If flags is 0, then the value specified in t is interpreted as an interval relative to the cur-
rent value of the clock specified by clockid.

If flags is TIMER_ABSTIME, then t is interpreted as an absolute time as measured by
the clock, clockid. If t is less than or equal to the current value of the clock, then

Linux man-pages 6.8 2024-05-02 113

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

clock_nanosleep() returns immediately without suspending the calling thread.

clock_nanosleep() suspends the execution of the calling thread until either at least the
time specified by t has elapsed, or a signal is delivered that causes a signal handler to be
called or that terminates the process.

If the call is interrupted by a signal handler, clock_nanosleep() fails with the error
EINTR. Inaddition, if remain is not NULL, and flags was not TIMER_ABSTIME, it
returns the remaining unslept time in remain. This value can then be used to call
clock_nanosleep() again and complete a (relative) sleep.

RETURN VALUE
On successfully sleeping for the requested interval, clock_nanosleep() returns 0. If the
call is interrupted by a signal handler or encounters an error, then it returns one of the
positive error number listed in ERRORS.

ERRORS
EFAULT
t or remain specified an invalid address.

EINTR
The sleep was interrupted by a signal handler; see signal(7).

EINVAL
The value in the tv_nsec field was not in the range [0, 999999999] or tv_sec was
negative.

EINVAL
clockid was invalid. (CLOCK_THREAD_CPUTIME_ID is not a permitted
value for clockid.)

ENOTSUP
The kernel does not support sleeping against this clockid.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. Linux 2.6, glibc 2.1.

NOTES
If the interval specified in t is not an exact multiple of the granularity underlying clock
(see time(7)), then the interval will be rounded up to the next multiple. Furthermore, af-
ter the sleep completes, there may still be a delay before the CPU becomes free to once
again execute the calling thread.

Using an absolute timer is useful for preventing timer drift problems of the type de-
scribed in nanosleep(2). (Such problems are exacerbated in programs that try to restart
a relative sleep that is repeatedly interrupted by signals.) To perform a relative sleep that
avoids these problems, call clock gettime(2) for the desired clock, add the desired inter-
val to the returned time value, and then call clock_nanosleep() with the TIMER_AB-
STIME flag.

clock_nanosleep() is never restarted after being interrupted by a signal handler, regard-
less of the use of the sigaction(2) SA_RESTART flag.

The remain argument is unused, and unnecessary, when flags is TIMER_ABSTIME.

Linux man-pages 6.8 2024-05-02 114

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

(An absolute sleep can be restarted using the same t argument.)

POSIX.1 specifies that clock _nanosleep() has no effect on signals dispositions or the
signal mask.

POSIX.1 specifies that after changing the value of the CLOCK_REALTIME clock via
clock_settime(2), the new clock value shall be used to determine the time at which a
thread blocked on an absolute clock_nanosleep() will wake up; if the new clock value
falls past the end of the sleep interval, then the clock_nanosleep() call will return imme-
diately.

POSIX.1 specifies that changing the value of the CLOCK_REALTIME clock via
clock_settime(2) shall have no effect on a thread that is blocked on a relative
clock_nanosleep().

SEE ALSO
clock_getres(2), nanosleep(2), restart_syscall(2), timer_create(2), sleep(3), timespec(3),
usleep(3), time(7)

Linux man-pages 6.8 2024-05-02 115

clone(2) System Calls Manual clone(2)

NAME

clone, _clone2, clone3 — create a child process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

I* Prototype for the glibc wrapper function */

#define _GNU_SOURCE
#include <sched.h>

int clone(int (* fn)(void *_Nullable), void *stack, int flags,
void *_Nullable arg, ... /* pid_t*_Nullable parent_tid,
void *_Nullable tls,
pid_t* Nullable child_tid */);

[* For the prototype of the raw clone() system call, see NOTES */

#include <linux/sched.h> /* Definition of struct clone_args */
#include <sched.h> /* Definition of CLONE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_clone3, struct clone_args *cl_args, size_t size);

Note: glibc provides no wrapper for clone3(), necessitating the use of syscall(2).

DESCRIPTION
These system calls create a new (“"child") process, in a manner similar to fork(2).

By contrast with fork(2), these system calls provide more precise control over what
pieces of execution context are shared between the calling process and the child process.
For example, using these system calls, the caller can control whether or not the two
processes share the virtual address space, the table of file descriptors, and the table of
signal handlers. These system calls also allow the new child process to be placed in sep-
arate namespaces(7).

Note that in this manual page, "calling process” normally corresponds to "parent
process”. But see the descriptions of CLONE_PARENT and CLONE_THREAD be-
low.

This page describes the following interfaces:

» The glibc clone() wrapper function and the underlying system call on which it is
based. The main text describes the wrapper function; the differences for the raw sys-
tem call are described toward the end of this page.

* The newer clone3() system call.

In the remainder of this page, the terminology "the clone call” is used when noting de-
tails that apply to all of these interfaces.

The clone() wrapper function
When the child process is created with the clone() wrapper function, it commences exe-
cution by calling the function pointed to by the argument fn. (This differs from fork(2),
where execution continues in the child from the point of the fork(2) call.) The arg argu-
ment is passed as the argument of the function n.

Linux man-pages 6.8 2024-05-02 116

clone(2) System Calls Manual clone(2)

When the fn(arg) function returns, the child process terminates. The integer returned
by fn is the exit status for the child process. The child process may also terminate ex-
plicitly by calling exit(2) or after receiving a fatal signal.

The stack argument specifies the location of the stack used by the child process. Since
the child and calling process may share memory, it is not possible for the child process
to execute in the same stack as the calling process. The calling process must therefore
set up memory space for the child stack and pass a pointer to this space to clone().
Stacks grow downward on all processors that run Linux (except the HP PA processors),
so stack usually points to the topmost address of the memory space set up for the child
stack. Note that clone() does not provide a means whereby the caller can inform the
kernel of the size of the stack area.

The remaining arguments to clone() are discussed below.

clone3()

The clone3() system call provides a superset of the functionality of the older clone() in-
terface. It also provides a number of APl improvements, including: space for additional
flags bits; cleaner separation in the use of various arguments; and the ability to specify
the size of the child’s stack area.

As with fork(2), clone3() returns in both the parent and the child. It returns O in the
child process and returns the PID of the child in the parent.

The cl_args argument of clone3() is a structure of the following form:

struct clone_args {

ué4 flags; /* Flags bit mask */
u6é4 pidfd; /* Where to store PID file descriptor
ant *) */

ué4 child_tid; /* Where to store child TID,

in child®s memory (pid_t *) */
u64 parent_tid; /* Where to store child TID,

in parent"s memory (pid_t *) */
ué4 exit_signal; /* Signal to deliver to parent on

child termination */

u64 stack; /* Pointer to lowest byte of stack */
ub4 stack size; /* Size of stack */

ué4d tlis; /* Location of new TLS */

u64 set_tid; /* Pointer to a pid_t array

(since Linux 5.5) */
u64 set _tid_size; /* Number of elements In set tid
(since Linux 5.5) */

u64 cgroup; /* File descriptor for target cgroup

of child (since Linux 5.7) */
s
The size argument that is supplied to clone3() should be initialized to the size of this

structure. (The existence of the size argument permits future extensions to the
clone_args structure.)

The stack for the child process is specified via cl_args.stack, which points to the lowest
byte of the stack area, and cl_args.stack_size, which specifies the size of the stack in

Linux man-pages 6.8 2024-05-02 117

clone(2) System Calls Manual clone(2)

bytes. In the case where the CLONE_VM flag (see below) is specified, a stack must be
explicitly allocated and specified. Otherwise, these two fields can be specified as NULL
and 0, which causes the child to use the same stack area as the parent (in the child’s own
virtual address space).

The remaining fields in the cl_args argument are discussed below.

Equivalence between clone() and clone3() arguments
Unlike the older clone() interface, where arguments are passed individually, in the newer
clone3() interface the arguments are packaged into the clone_args structure shown
above. This structure allows for a superset of the information passed via the clone() ar-
guments.

The following table shows the equivalence between the arguments of clone() and the
fields in the clone_args argument supplied to clone3():

clone() clone3() Notes
cl_args field
flags & ~Oxff flags For most flags; details below
parent_tid pidfd See CLONE_PIDFD
child_tid child_tid See CLONE_CHILD_SETTID

parent_tid parent_tid See CLONE_PARENT_SETTID
flags & Oxff exit_signal

stack stack

stack_size

tls tls See CLONE_SETTLS

set_tid See below for details
set_tid_size

cgroup See CLONE_INTO_CGROUP

The child termination signal
When the child process terminates, a signal may be sent to the parent. The termination
signal is specified in the low byte of flags (clone()) or in cl_args.exit_signal (clone3()).
If this signal is specified as anything other than SIGCHLD, then the parent process
must specify the _ WALL or _ WCLONE options when waiting for the child with
wait(2). If no signal (i.e., zero) is specified, then the parent process is not signaled when
the child terminates.

The set_tid array

By default, the kernel chooses the next sequential PID for the new process in each of the
PID namespaces where it is present. When creating a process with clone3(), the set_tid
array (available since Linux 5.5) can be used to select specific PIDs for the process in
some or all of the PID namespaces where it is present. If the PID of the newly created
process should be set only for the current PID namespace or in the newly created PID
namespace (if flags contains CLONE_NEWRPID) then the first element in the set_tid
array has to be the desired PID and set_tid_size needs to be 1.

If the PID of the newly created process should have a certain value in multiple PID
namespaces, then the set_tid array can have multiple entries. The first entry defines the
PID in the most deeply nested PID namespace and each of the following entries contains
the PID in the corresponding ancestor PID namespace. The number of PID namespaces
in which a PID should be set is defined by set_tid_size which cannot be larger than the
number of currently nested PID namespaces.

Linux man-pages 6.8 2024-05-02 118

clone(2) System Calls Manual clone(2)

To create a process with the following PIDs in a PID namespace hierarchy:
PID NS level Requested PID Notes

0 31496 Outermost PID namespace

1 42

2 7 Innermost PID namespace
Set the array to:

set_tid[0] = 7;

set_tid[1] = 42;

set_tid[2] = 31496;

set_tid _size = 3;
If only the PIDs in the two innermost PID namespaces need to be specified, set the array
to:
set_tid[0]
set_tid[1]
set_tid_size = 2;

1|
N
N]

The PID in the PID namespaces outside the two innermost PID namespaces is selected
the same way as any other PID is selected.

The set_tid feature requires CAP_SYS_ADMIN or (since Linux 5.9) CAP_CHECK-
POINT_RESTORE in all owning user namespaces of the target PID namespaces.

Callers may only choose a PID greater than 1 in a given PID namespace if an init
process (i.e., a process with PID 1) already exists in that namespace. Otherwise the PID
entry for this PID namespace must be 1.

The flags mask
Both clone() and clone3() allow a flags bit mask that modifies their behavior and allows
the caller to specify what is shared between the calling process and the child process.
This bit mask—the flags argument of clone() or the cl_args.flags field passed to
clone3()—is referred to as the flags mask in the remainder of this page.

The flags mask is specified as a bitwise OR of zero or more of the constants listed be-
low. Except as noted below, these flags are available (and have the same effect) in both
clone() and clone3().

CLONE_CHILD_CLEARTID (since Linux 2.5.49)
Clear (zero) the child thread ID at the location pointed to by child_tid (clone())
or cl_args.child_tid (clone3()) in child memory when the child exits, and do a
wakeup on the futex at that address. The address involved may be changed by
the set_tid_address(2) system call. This is used by threading libraries.

CLONE_CHILD_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by child_tid (clone()) or
cl_args.child_tid (clone3()) in the child’s memory. The store operation com-
pletes before the clone call returns control to user space in the child process.
(Note that the store operation may not have completed before the clone call re-
turns in the parent process, which is relevant if the CLONE_VM flag is also em-

ployed.)

Linux man-pages 6.8 2024-05-02 119

clone(2) System Calls Manual clone(2)

CLONE_CLEAR_SIGHAND (since Linux 5.5)
By default, signal dispositions in the child thread are the same as in the parent.
If this flag is specified, then all signals that are handled in the parent (and not set
to SIG_IGN) are reset to their default dispositions (SIG_DFL) in the child.

Specifying this flag together with CLONE_SIGHAND is nonsensical and disal-
lowed.

CLONE_DETACHED (historical)
For a while (during the Linux 2.5 development series) there was a CLONE_DE-
TACHED flag, which caused the parent not to receive a signal when the child
terminated. Ultimately, the effect of this flag was subsumed under the
CLONE_THREAD flag and by the time Linux 2.6.0 was released, this flag had
no effect. Starting in Linux 2.6.2, the need to give this flag together with
CLONE_THREAD disappeared.

This flag is still defined, but it is usually ignored when calling clone(). However,
see the description of CLONE_PIDFD for some exceptions.

CLONE_FILES (since Linux 2.0)

If CLONE_FILES is set, the calling process and the child process share the
same file descriptor table. Any file descriptor created by the calling process or
by the child process is also valid in the other process. Similarly, if one of the
processes closes a file descriptor, or changes its associated flags (using the
fcntl(2) F_SETFD operation), the other process is also affected. If a process
sharing a file descriptor table calls execve(2), its file descriptor table is duplicated
(unshared).

If CLONE_FILES is not set, the child process inherits a copy of all file descrip-
tors opened in the calling process at the time of the clone call. Subsequent oper-
ations that open or close file descriptors, or change file descriptor flags, per-
formed by either the calling process or the child process do not affect the other
process. Note, however, that the duplicated file descriptors in the child refer to
the same open file descriptions as the corresponding file descriptors in the calling
process, and thus share file offsets and file status flags (see open(2)).

CLONE_FS (since Linux 2.0)
If CLONE_FS is set, the caller and the child process share the same filesystem
information. This includes the root of the filesystem, the current working direc-
tory, and the umask. Any call to chroot(2), chdir(2), or umask(2) performed by
the calling process or the child process also affects the other process.

If CLONE_FS is not set, the child process works on a copy of the filesystem in-
formation of the calling process at the time of the clone call. Calls to chroot(2),
chdir(2), or umask(2) performed later by one of the processes do not affect the
other process.

CLONE_INTO_CGROURP (since Linux 5.7)
By default, a child process is placed in the same version 2 cgroup as its parent.
The CLONE_INTO_CGROUP flag allows the child process to be created in a
different version 2 cgroup. (Note that CLONE_INTO_CGROUP has effect
only for version 2 cgroups.)

Linux man-pages 6.8 2024-05-02 120

clone(2)

System Calls Manual clone(2)

In order to place the child process in a different cgroup, the caller specifies
CLONE_INTO_CGROUP in cl_args.flags and passes a file descriptor that
refers to a version 2 cgroup in the cl_args.cgroup field. (This file descriptor can
be obtained by opening a cgroup v2 directory using either the O _RDONLY or
the O_PATH flag.) Note that all of the usual restrictions (described in
cgroups(7)) on placing a process into a version 2 cgroup apply.

Among the possible use cases for CLONE_INTO_CGROUP are the following:

* Spawning a process into a cgroup different from the parent’s cgroup makes it
possible for a service manager to directly spawn new services into dedicated
cgroups. This eliminates the accounting jitter that would be caused if the
child process was first created in the same cgroup as the parent and then
moved into the target cgroup. Furthermore, spawning the child process di-
rectly into a target cgroup is significantly cheaper than moving the child
process into the target cgroup after it has been created.

 The CLONE_INTO_CGROUP flag also allows the creation of frozen child
processes by spawning them into a frozen cgroup. (See cgroups(7) for a de-
scription of the freezer controller.)

» For threaded applications (or even thread implementations which make use
of cgroups to limit individual threads), it is possible to establish a fixed
cgroup layout before spawning each thread directly into its target cgroup.

CLONE_IO (since Linux 2.6.25)

If CLONE_IO is set, then the new process shares an I/O context with the calling
process. If this flag is not set, then (as with fork(2)) the new process has its own
I/0 context.

The 1/0 context is the 1/0 scope of the disk scheduler (i.e., what the 1/0 sched-
uler uses to model scheduling of a process’s 1/0). If processes share the same
I/0O context, they are treated as one by the 1/0 scheduler. As a consequence, they
get to share disk time. For some 1/O schedulers, if two processes share an 1/0
context, they will be allowed to interleave their disk access. If several threads
are doing 1/O on behalf of the same process (aio_read(3), for instance), they
should employ CLONE_ 10 to get better 1/0 performance.

If the kernel is not configured with the CONFIG_BLOCK option, this flag is a
no-op.

CLONE_NEWCGROUP (since Linux 4.6)

Create the process in a new cgroup namespace. If this flag is not set, then (as
with fork(2)) the process is created in the same cgroup namespaces as the calling
process.

For further information on cgroup namespaces, see cgroup_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWC-
GROUP.

CLONE_NEWIPC (since Linux 2.6.19)

If CLONE_NEWIPC is set, then create the process in a new IPC namespace. If
this flag is not set, then (as with fork(2)), the process is created in the same IPC
namespace as the calling process.

Linux man-pages 6.8 2024-05-02 121

clone(2)

System Calls Manual clone(2)

For further information on IPC namespaces, see ipc_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWIPC. This flag can’t be specified in conjunction with
CLONE_SYSVSEM.

CLONE_NEWNET (since Linux 2.6.24)

(The implementation of this flag was completed only by about Linux 2.6.29.)

If CLONE_NEWNET is set, then create the process in a new network name-
space. If this flag is not set, then (as with fork(2)) the process is created in the
same network namespace as the calling process.

For further information on network namespaces, see network namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWNET.

CLONE_NEWNS (since Linux 2.4.19)

If CLONE_NEWNS is set, the cloned child is started in a new mount name-
space, initialized with a copy of the namespace of the parent. If
CLONE_NEWNS is not set, the child lives in the same mount namespace as the
parent.

For further information on mount namespaces, see namespaces(7) and
mount_namespaces(7).

Only a privileged process (CAP_SYS ADMIN) can employ
CLONE_NEWNS. It is not permitted to specify both CLONE_NEWNS and
CLONE_FS in the same clone call.

CLONE_NEWRPID (since Linux 2.6.24)

If CLONE_NEWRPID is set, then create the process in a new PID namespace. If
this flag is not set, then (as with fork(2)) the process is created in the same PID
namespace as the calling process.

For further information on PID namespaces, see namespaces(7) and
pid_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEW-
PID. This flag can’t be specified in conjunction with CLONE_THREAD.

CLONE_NEWUSER

(This flag first became meaningful for clone() in Linux 2.6.23, the current
clone() semantics were merged in Linux 3.5, and the final pieces to make the
user namespaces completely usable were merged in Linux 3.8.)

If CLONE_NEWUSER is set, then create the process in a new user namespace.
If this flag is not set, then (as with fork(2)) the process is created in the same user
namespace as the calling process.

For further information on user namespaces, see namespaces(7) and
user_namespaces(7).

Before Linux 3.8, use of CLONE_NEWUSER required that the caller have
three capabilities: CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID.
Starting with Linux 3.8, no privileges are needed to create a user namespace.

Linux man-pages 6.8 2024-05-02 122

clone(2) System Calls Manual clone(2)

This flag can’t be specified in conjunction with CLONE_THREAD or
CLONE_PARENT. For security reasons, CLONE_NEWUSER cannot be
specified in conjunction with CLONE_FS.

CLONE_NEWUTS (since Linux 2.6.19)
If CLONE_NEWUTS is set, then create the process in a new UTS namespace,
whose identifiers are initialized by duplicating the identifiers from the UTS
namespace of the calling process. If this flag is not set, then (as with fork(2)) the
process is created in the same UTS namespace as the calling process.

For further information on UTS namespaces, see uts_namespaces(7).

Only a privileged process (CAP_SYS ADMIN) can employ
CLONE_NEWUTS.

CLONE_PARENT (since Linux 2.3.12)
If CLONE_PARENT is set, then the parent of the new child (as returned by
getppid(2)) will be the same as that of the calling process.

If CLONE_PARENT is not set, then (as with fork(2)) the child’s parent is the
calling process.

Note that it is the parent process, as returned by getppid(2), which is signaled
when the child terminates, so that if CLONE_PARENT is set, then the parent of
the calling process, rather than the calling process itself, is signaled.

The CLONE_PARENT flag can’t be used in clone calls by the global init
process (PID 1 in the initial PID namespace) and init processes in other PID
namespaces. This restriction prevents the creation of multi-rooted process trees
as well as the creation of unreapable zombies in the initial PID namespace.

CLONE_PARENT _SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by parent_tid (clone()) or
cl_args.parent_tid (clone3()) in the parent’s memory. (In Linux 2.5.32-2.5.48
there was a flag CLONE_SETTID that did this.) The store operation completes
before the clone call returns control to user space.

CLONE_PID (Linux 2.0 to Linux 2.5.15)

If CLONE_PID is set, the child process is created with the same process ID as
the calling process. This is good for hacking the system, but otherwise of not
much use. From Linux 2.3.21 onward, this flag could be specified only by the
system boot process (PID 0). The flag disappeared completely from the kernel
sources in Linux 2.5.16. Subsequently, the kernel silently ignored this bit if it
was specified in the flags mask. Much later, the same bit was recycled for use as
the CLONE_PIDFD flag.

CLONE_PIDFD (since Linux 5.2)
If this flag is specified, a PID file descriptor referring to the child process is allo-
cated and placed at a specified location in the parent’s memory. The close-on-
exec flag is set on this new file descriptor. PID file descriptors can be used for
the purposes described in pidfd_open(2).

* When using clone3(), the PID file descriptor is placed at the location pointed
to by cl_args.pidfd.

Linux man-pages 6.8 2024-05-02 123

clone(2)

System Calls Manual clone(2)

* When using clone(), the PID file descriptor is placed at the location pointed
to by parent_tid. Since the parent_tid argument is used to return the PID
file descriptor, CLONE_PIDFD cannot be used with CLONE_PAR-
ENT_SETTID when calling clone().

It is currently not possible to use this flag together with CLONE_THREAD.
This means that the process identified by the PID file descriptor will always be a
thread group leader.

If the obsolete CLONE _DETACHED flag is specified alongside
CLONE_PIDFD when calling clone(), an error is returned. An error also re-
sults if CLONE_DETACHED is specified when calling clone3(). This error be-
havior ensures that the bit corresponding to CLONE_DETACHED can be
reused for further PID file descriptor features in the future.

CLONE_PTRACE (since Linux 2.2)

If CLONE_PTRACE is specified, and the calling process is being traced, then
trace the child also (see ptrace(2)).

CLONE_SETTLS (since Linux 2.5.32)

The TLS (Thread Local Storage) descriptor is set to tls.

The interpretation of tls and the resulting effect is architecture dependent. On
x86, tls is interpreted as a struct user_desc * (see set thread area(2)). On
x86-64 it is the new value to be set for the %fs base register (see the
ARCH_SET_FS argument to arch_prctl(2)). On architectures with a dedicated
TLS register, it is the new value of that register.

Use of this flag requires detailed knowledge and generally it should not be used
except in libraries implementing threading.

CLONE_SIGHAND (since Linux 2.0)

If CLONE_SIGHAND is set, the calling process and the child process share the
same table of signal handlers. If the calling process or child process calls
sigaction(2) to change the behavior associated with a signal, the behavior is
changed in the other process as well. However, the calling process and child
processes still have distinct signal masks and sets of pending signals. So, one of
them may block or unblock signals using sigprocmask(2) without affecting the
other process.

If CLONE_SIGHAND is not set, the child process inherits a copy of the signal
handlers of the calling process at the time of the clone call. Calls to sigaction(2)
performed later by one of the processes have no effect on the other process.

Since Linux 2.6.0, the flags mask must also include CLONE_VM if
CLONE_SIGHAND is specified.

CLONE_STOPPED (since Linux 2.6.0)

If CLONE_STOPPED is set, then the child is initially stopped (as though it was
sent a SIGSTOP signal), and must be resumed by sending it a SIGCONT sig-
nal.

This flag was deprecated from Linux 2.6.25 onward, and was removed alto-
gether in Linux 2.6.38. Since then, the kernel silently ignores it without error.
Starting with Linux 4.6, the same bit was reused for the

Linux man-pages 6.8 2024-05-02 124

clone(2) System Calls Manual clone(2)

CLONE_NEWCGROURP flag.

CLONE_SYSVSEM (since Linux 2.5.10)
If CLONE_SYSVSEM is set, then the child and the calling process share a sin-
gle list of System V semaphore adjustment (semadj) values (see semop(2)). In
this case, the shared list accumulates semadj values across all processes sharing
the list, and semaphore adjustments are performed only when the last process
that is sharing the list terminates (or ceases sharing the list using unshare(2)). If
this flag is not set, then the child has a separate semad;j list that is initially empty.

CLONE_THREAD (since Linux 2.4.0)
If CLONE_THREAD is set, the child is placed in the same thread group as the
calling process. To make the remainder of the discussion of
CLONE_THREAD more readable, the term "thread" is used to refer to the
processes within a thread group.

Thread groups were a feature added in Linux 2.4 to support the POSIX threads
notion of a set of threads that share a single PID. Internally, this shared PID is
the so-called thread group identifier (TGID) for the thread group. Since Linux
2.4, calls to getpid(2) return the TGID of the caller.

The threads within a group can be distinguished by their (system-wide) unique
thread IDs (TID). A new thread’s TID is available as the function result returned
to the caller, and a thread can obtain its own TID using gettid(2).

When a clone call is made without specifying CLONE_THREAD, then the re-
sulting thread is placed in a new thread group whose TGID is the same as the
thread’s TID. This thread is the leader of the new thread group.

A new thread created with CLONE_THREAD has the same parent process as
the process that made the clone call (i.e., like CLONE_PARENT), so that calls
to getppid(2) return the same value for all of the threads in a thread group.
When a CLONE_THREAD thread terminates, the thread that created it is not
sent a SIGCHLD (or other termination) signal; nor can the status of such a
thread be obtained using wait(2). (The thread is said to be detached.)

After all of the threads in a thread group terminate the parent process of the
thread group is sent a SIGCHLD (or other termination) signal.

If any of the threads in a thread group performs an execve(2), then all threads
other than the thread group leader are terminated, and the new program is exe-
cuted in the thread group leader.

If one of the threads in a thread group creates a child using fork(2), then any
thread in the group can wait(2) for that child.

Since Linux 2.5.35, the flags mask must also include CLONE_SIGHAND if
CLONE_THREAD is specified (and note that, since Linux 2.6.0,
CLONE_SIGHAND also requires CLONE_VM to be included).

Signal dispositions and actions are process-wide: if an unhandled signal is deliv-
ered to a thread, then it will affect (terminate, stop, continue, be ignored in) all
members of the thread group.

Each thread has its own signal mask, as set by sigprocmask(2).

Linux man-pages 6.8 2024-05-02 125

clone(2)

System Calls Manual clone(2)

A signal may be process-directed or thread-directed. A process-directed signal
is targeted at a thread group (i.e., a TGID), and is delivered to an arbitrarily se-
lected thread from among those that are not blocking the signal. A signal may
be process-directed because it was generated by the kernel for reasons other than
a hardware exception, or because it was sent using kill(2) or sigqueue(3). A
thread-directed signal is targeted at (i.e., delivered to) a specific thread. A signal
may be thread directed because it was sent wusing tgkill(2) or
pthread_sigqueue(3), or because the thread executed a machine language in-
struction that triggered a hardware exception (e.g., invalid memory access trig-
gering SIGSEGYV or a floating-point exception triggering SIGFPE).

A call to sigpending(2) returns a signal set that is the union of the pending
process-directed signals and the signals that are pending for the calling thread.

If a process-directed signal is delivered to a thread group, and the thread group
has installed a handler for the signal, then the handler is invoked in exactly one,
arbitrarily selected member of the thread group that has not blocked the signal.
If multiple threads in a group are waiting to accept the same signal using
sigwaitinfo(2), the kernel will arbitrarily select one of these threads to receive the
signal.

CLONE_UNTRACED (since Linux 2.5.46)

If CLONE_UNTRACED is specified, then a tracing process cannot force
CLONE_PTRACE on this child process.

CLONE_VFORK (since Linux 2.2)

If CLONE_VFORK is set, the execution of the calling process is suspended un-
til the child releases its virtual memory resources via a call to execve(2) or
_exit(2) (as with vfork(2)).

If CLONE_VFORK is not set, then both the calling process and the child are
schedulable after the call, and an application should not rely on execution occur-
ring in any particular order.

CLONE_VM (since Linux 2.0)

If CLONE_VM is set, the calling process and the child process run in the same
memory space. In particular, memory writes performed by the calling process or
by the child process are also visible in the other process. Moreover, any memory
mapping or unmapping performed with mmap(2) or munmap(2) by the child or
calling process also affects the other process.

If CLONE_VM is not set, the child process runs in a separate copy of the mem-
ory space of the calling process at the time of the clone call. Memory writes or
file mappings/unmappings performed by one of the processes do not affect the
other, as with fork(2).

If the CLONE_VM flag is specified and the CLONE_VFORK flag is not speci-
fied, then any alternate signal stack that was established by sigaltstack(2) is
cleared in the child process.

RETURN VALUE
On success, the thread ID of the child process is returned in the caller’s thread of execu-
tion. On failure, —1 is returned in the caller’s context, no child process is created, and
errno is set to indicate the error.

Linux man-pages 6.8 2024-05-02 126

clone(2) System Calls Manual clone(2)

ERRORS
EACCES (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the restrictions
(described in cgroups(7)) on placing the child process into the version 2 cgroup
referred to by cl_args.cgroup are not met.

EAGAIN
Too many processes are already running; see fork(2).

EBUSY (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor
specified in cl_args.cgroup refers to a version 2 cgroup in which a domain con-
troller is enabled.

EEXIST (clone3() only)
One (or more) of the PIDs specified in set_tid already exists in the correspond-
ing PID namespace.

EINVAL
Both CLONE_SIGHAND and CLONE_CLEAR_SIGHAND were specified
in the flags mask.

EINVAL
CLONE_SIGHAND was specified in the flags mask, but CLONE_VM was
not. (Since Linux 2.6.0.)

EINVAL
CLONE_THREAD was specified in the flags mask, but CLONE_SIGHAND
was not. (Since Linux 2.5.35.)

EINVAL
CLONE_THREAD was specified in the flags mask, but the current process
previously called unshare(2) with the CLONE_NEWPID flag or used setns(2)
to reassociate itself with a PID namespace.

EINVAL
Both CLONE_FS and CLONE_NEWNS were specified in the flags mask.

EINVAL (since Linux 3.9)
Both CLONE_NEWUSER and CLONE_FS were specified in the flags mask.

EINVAL
Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in the flags
mask.

EINVAL
CLONE_NEWPID and one (or both) of CLONE_THREAD or
CLONE_PARENT were specified in the flags mask.

EINVAL
CLONE_NEWUSER and CLONE_THREAD were specified in the flags
mask.

EINVAL (since Linux 2.6.32)
CLONE_PARENT was specified, and the caller is an init process.

Linux man-pages 6.8 2024-05-02 127

clone(2) System Calls Manual clone(2)

EINVAL
Returned by the glibc clone() wrapper function when fn or stack is specified as
NULL.

EINVAL
CLONE_NEWIPC was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL
CLONE_NEWNET was specified in the flags mask, but the kernel was not
configured with the CONFIG_NET _NS option.

EINVAL
CLONE_NEWRPID was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_PID_NS option.

EINVAL
CLONE_NEWUSER was specified in the flags mask, but the kernel was not
configured with the CONFIG_USER_NS option.

EINVAL
CLONE_NEWUTS was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_UTS_NS option.

EINVAL
stack is not aligned to a suitable boundary for this architecture. For example, on
aarch64, stack must be a multiple of 16.

EINVAL (clone3() only)
CLONE_DETACHED was specified in the flags mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_DETACHED in the
flags mask.

EINVAL
CLONE_PIDFD was specified together with CLONE_THREAD in the flags
mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_PARENT _SETTID in
the flags mask.

EINVAL (clone3() only)
set_tid_size is greater than the number of nested PID namespaces.

EINVAL (clone3() only)
One of the PIDs specified in set_tid was an invalid.

EINVAL (clone3() only)
CLONE_THREAD or CLONE_PARENT was specified in the flags mask, but
a signal was specified in exit_signal.

EINVAL (AArch64 only, Linux 4.6 and earlier)
stack was not aligned to a 128-bit boundary.

Linux man-pages 6.8 2024-05-02 128

clone(2) System Calls Manual clone(2)

ENOMEM
Cannot allocate sufficient memory to allocate a task structure for the child, or to
copy those parts of the caller’s context that need to be copied.

ENOSPC (since Linux 3.7)
CLONE_NEWRPID was specified in the flags mask, but the limit on the nesting
depth of PID namespaces would have been exceeded; see pid_namespaces(7).

ENOSPC (since Linux 4.9; beforehand EUSERS)
CLONE_NEWUSER was specified in the flags mask, and the call would cause
the limit on the number of nested user namespaces to be exceeded. See
user_namespaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

ENOSPC (since Linux 4.9)
One of the values in the flags mask specified the creation of a new user name-
space, but doing so would have caused the limit defined by the corresponding file
in /proc/sys/user to be exceeded. For further details, see namespaces(7).

EOPNOTSUPP (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor
specified in cl_args.cgroup refers to a version 2 cgroup that is in the domain in-
valid state.

EPERM
CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET,
CLONE_NEWNS, CLONE_NEWPID, or CLONE_NEWUTS was specified
by an unprivileged process (process without CAP_SYS_ADMIN).

EPERM
CLONE_PID was specified by a process other than process 0. (This error oc-
curs only on Linux 2.5.15 and earlier.)

EPERM
CLONE_NEWUSER was specified in the flags mask, but either the effective
user ID or the effective group ID of the caller does not have a mapping in the
parent namespace (see user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in the flags mask and the caller is in a ch-
root environment (i.e., the caller’s root directory does not match the root direc-
tory of the mount namespace in which it resides).

EPERM (clone3() only)
set_tid_size was greater than zero, and the caller lacks the CAP_SYS_ADMIN
capability in one or more of the user namespaces that own the corresponding
PID namespaces.

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be seen
only during a trace.)

EUSERS (Linux 3.11 to Linux 4.8)
CLONE_NEWUSER was specified in the flags mask, and the limit on the
number of nested user namespaces would be exceeded. See the discussion of the

Linux man-pages 6.8 2024-05-02 129

clone(2) System Calls Manual clone(2)

ENQOSPC error above.

VERSIONS
The glibc clone() wrapper function makes some changes in the memory pointed to by
stack (changes required to set the stack up correctly for the child) before invoking the
clone() system call. So, in cases where clone() is used to recursively create children, do
not use the buffer employed for the parent’s stack as the stack of the child.

On 386, clone() should not be called through vsyscall, but directly through int $0x80.

C library/kernel differences
The raw clone() system call corresponds more closely to fork(2) in that execution in the
child continues from the point of the call. As such, the fn and arg arguments of the
clone() wrapper function are omitted.

In contrast to the glibc wrapper, the raw clone() system call accepts NULL as a stack ar-
gument (and clone3() likewise allows cl_args.stack to be NULL). In this case, the child
uses a duplicate of the parent’s stack. (Copy-on-write semantics ensure that the child
gets separate copies of stack pages when either process modifies the stack.) In this case,
for correct operation, the CLONE_VM option should not be specified. (If the child
shares the parent’s memory because of the use of the CLONE_VM flag, then no copy-
on-write duplication occurs and chaos is likely to result.)

The order of the arguments also differs in the raw system call, and there are variations in
the arguments across architectures, as detailed in the following paragraphs.

The raw system call interface on x86-64 and some other architectures (including sh, tile,
and alpha) is:

long clone(unsigned long flags, void *stack,
int *parent_tid, int *child_tid,
unsigned long tls);

On x86-32, and several other common architectures (including score, ARM, ARM 64,
PA-RISC, arc, Power PC, xtensa, and MIPS), the order of the last two arguments is re-
versed:

long clone(unsigned long flags, void *stack,
int *parent_tid, unsigned long tls,
int *child_tid);
On the cris and s390 architectures, the order of the first two arguments is reversed:
long clone(void *stack, unsigned long flags,

int *parent_tid, Int *child_tid,
unsigned long tls);

On the microblaze architecture, an additional argument is supplied:

long clone(unsigned long flags, void *stack,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);

blackfin, m68k, and sparc
The argument-passing conventions on blackfin, m68k, and sparc are different from the
descriptions above. For details, see the kernel (and glibc) source.

Linux man-pages 6.8 2024-05-02 130

clone(2) System Calls Manual clone(2)

ia64
On ia64, a different interface is used:
int __clone2(int (*fn)(void *),
void *stack base, size_ t stack size,
int flags, void *arg,
/* pid_t *parent_tid, struct user_desc *tls,
pid_t *child_tid */);

The prototype shown above is for the glibc wrapper function; for the system call itself,
the prototype can be described as follows (it is identical to the clone() prototype on mi-
croblaze):

long clone2(unsigned long flags, void *stack base,
int stack size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);

__clone2() operates in the same way as clone(), except that stack_base points to the
lowest address of the child’s stack area, and stack size specifies the size of the stack
pointed to by stack_base.

STANDARDS
Linux.

HISTORY

clone3()
Linux 5.3.

Linux 2.4 and earlier
In the Linux 2.4.x series, CLONE_THREAD generally does not make the parent of the
new thread the same as the parent of the calling process. However, from Linux 2.4.7 to
Linux 2.4.18 the CLONE_THREAD flag implied the CLONE_PARENT flag (as in
Linux 2.6.0 and later).

In Linux 2.4 and earlier, clone() does not take arguments parent_tid, tls, and child_tid.

NOTES
One use of these system calls is to implement threads: multiple flows of control in a pro-
gram that run concurrently in a shared address space.

The kemp(2) system call can be used to test whether two processes share various re-
sources such as a file descriptor table, System V semaphore undo operations, or a virtual
address space.

Handlers registered using pthread_atfork(3) are not executed during a clone call.

BUGS
GNU C library versions 2.3.4 up to and including 2.24 contained a wrapper function for
getpid(2) that performed caching of PIDs. This caching relied on support in the glibc
wrapper for clone(), but limitations in the implementation meant that the cache was not
up to date in some circumstances. In particular, if a signal was delivered to the child im-
mediately after the clone() call, then a call to getpid(2) in a handler for the signal could
return the PID of the calling process ("the parent”), if the clone wrapper had not yet had
a chance to update the PID cache in the child. (This discussion ignores the case where
the child was created using CLONE_THREAD, when getpid(2) should return the same

Linux man-pages 6.8 2024-05-02 131

clone(2) System Calls Manual clone(2)

value in the child and in the process that called clone(), since the caller and the child are
in the same thread group. The stale-cache problem also does not occur if the flags argu-
ment includes CLONE_VM.) To get the truth, it was sometimes necessary to use code
such as the following:

#include <syscall._h>
pid_t mypid;

mypid = syscall(SYS_getpid);

Because of the stale-cache problem, as well as other problems noted in getpid(2), the
PID caching feature was removed in glibc 2.25.

EXAMPLES
The following program demonstrates the use of clone() to create a child process that ex-
ecutes in a separate UTS namespace. The child changes the hostname in its UTS name-
space. Both parent and child then display the system hostname, making it possible to
see that the hostname differs in the UTS namespaces of the parent and child. For an ex-
ample of the use of this program, see setns(2).

Within the sample program, we allocate the memory that is to be used for the child’s
stack using mmap(2) rather than malloc(3) for the following reasons:

* mmap(2) allocates a block of memory that starts on a page boundary and is a multi-
ple of the page size. This is useful if we want to establish a guard page (a page with
protection PROT_NONE) at the end of the stack using mprotect(2).

* We can specify the MAP_STACK flag to request a mapping that is suitable for a
stack. For the moment, this flag is a no-op on Linux, but it exists and has effect on
some other systems, so we should include it for portability.

Program source
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>

static int /> Start function for cloned child */
childFunc(void *arg)
{

struct utsname uts;

/* Change hostname in UTS namespace of child. */

Linux man-pages 6.8 2024-05-02 132

clone(2) System Calls Manual clone(2)

ifT (sethostname(arg, strlen(arg)) == -1)
err(EXIT_FAILURE, 'sethostname™);

/* Retrieve and display hostname. */
it (uname(&uts) == -1)

err(EXIT_FAILURE, "uname™);
printf("'uts.nodename in child: %s\n", uts.nodename);

/* Keep the namespace open for a while, by sleeping.
This allows some experimentation——-for example, another
process might join the namespace. */

sleep(200);

return O; /* Child terminates now */

}

#define STACK_SIZE (1024 * 1024) /* Stack size for cloned child */

int

main(int argc, char *argv[])

{
char *stack; /* Start of stack buffer */
char *stackTop; /* End of stack buffer */
pid_t pid;

struct utsname uts;

if (argc < 2) {
fprintf(stderr, "Usage: %s <child-hostname>\n", argv[0]);
ex1t(EXIT_SUCCESS);

}

/* Allocate memory to be used for the stack of the child. */
stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
if (stack == MAP_FAILED)
err(EXIT_FAILURE, "mmap™);
stackTop = stack + STACK _SIZE; /* Assume stack grows downward */

/* Create child that has i1ts own UTS namespace;
child commences execution in childFunc(). */

pid = clone(childFunc, stackTop, CLONE NEWUTS | SIGCHLD, argv[1l])
it (pid == -1)

Linux man-pages 6.8 2024-05-02 133

clone(2) System Calls Manual clone(2)

err(EXIT_FAILURE, *clone™);
printf(*'clone() returned %jd\n', (intmax_t) pid);

/* Parent falls through to here */

sleep(1); /* Give child time to change i1ts hostname */

/* Display hostname iIn parent®s UTS namespace. This will be
different from hostname in child®"s UTS namespace. */

if (uname(&uts) == -1)
err(EXIT_FAILURE, "uname');
printf('uts.nodename in parent: %s\n", uts.nodename);

it (wartpid(pid, NULL, 0) == -1) /* Wait for child */
err(EXIT_FAILURE, "waitpid™);
printf("'child has terminated\n™);

exit(EXIT_SUCCESS);
}

SEE ALSO
fork(2), futex(2), getpid(2), gettid(2), kcmp(2), mmap(2), pidfd_open(2),
set_thread area(2), set tid address(2), setns(2), tkill(2), unshare(2), wait(2),
capabilities(7), namespaces(7), pthreads(7)

Linux man-pages 6.8 2024-05-02 134

close(2) System Calls Manual close(2)

NAME

close — close a file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int close(int fd);

DESCRIPTION
close() closes a file descriptor, so that it no longer refers to any file and may be reused.
Any record locks (see fcntl(2)) held on the file it was associated with, and owned by the
process, are removed regardless of the file descriptor that was used to obtain the lock.
This has some unfortunate consequences and one should be extra careful when using ad-
visory record locking. See fcntl(2) for discussion of the risks and consequences as well
as for the (probably preferred) open file description locks.

If fd is the last file descriptor referring to the underlying open file description (see
open(2)), the resources associated with the open file description are freed; if the file de-
scriptor was the last reference to a file which has been removed using unlink(2), the file
is deleted.

RETURN VALUE
close() returns zero on success. On error, —1 is returned, and errno is set to indicate the
error.

ERRORS
EBADF
fd isn’t a valid open file descriptor.

EINTR
The close() call was interrupted by a signal; see signal(7).

EIO An /O error occurred.

ENOSPC

EDQUOT
On NFS, these errors are not normally reported against the first write which ex-
ceeds the available storage space, but instead against a subsequent write(2),
fsync(2), or close().

See NOTES for a discussion of why close() should not be retried after an error.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
A successful close does not guarantee that the data has been successfully saved to disk,
as the kernel uses the buffer cache to defer writes. Typically, filesystems do not flush

buffers when a file is closed. If you need to be sure that the data is physically stored on
the underlying disk, use fsync(2). (It will depend on the disk hardware at this point.)

Linux man-pages 6.8 2024-05-02 135

close(2) System Calls Manual close(2)

The close-on-exec file descriptor flag can be used to ensure that a file descriptor is auto-
matically closed upon a successful execve(2); see fcntl(2) for details.

Multithreaded processes and close()
It is probably unwise to close file descriptors while they may be in use by system calls in
other threads in the same process. Since a file descriptor may be reused, there are some
obscure race conditions that may cause unintended side effects.

Furthermore, consider the following scenario where two threads are performing opera-
tions on the same file descriptor:

(1) One thread is blocked in an 1/0 system call on the file descriptor. For example, it
is trying to write(2) to a pipe that is already full, or trying to read(2) from a stream
socket which currently has no available data.

(2) Another thread closes the file descriptor.

The behavior in this situation varies across systems. On some systems, when the file de-
scriptor is closed, the blocking system call returns immediately with an error.

On Linux (and possibly some other systems), the behavior is different: the blocking 1/O
system call holds a reference to the underlying open file description, and this reference
keeps the description open until the 1/0 system call completes. (See open(2) for a dis-
cussion of open file descriptions.) Thus, the blocking system call in the first thread may
successfully complete after the close() in the second thread.

Dealing with error returns from close()
A careful programmer will check the return value of close(), since it is quite possible
that errors on a previous write(2) operation are reported only on the final close() that re-
leases the open file description. Failing to check the return value when closing a file
may lead to silent loss of data. This can especially be observed with NFS and with disk
quota.

Note, however, that a failure return should be used only for diagnostic purposes (i.e., a
warning to the application that there may still be 1/0 pending or there may have been
failed 1/0) or remedial purposes (e.g., writing the file once more or creating a backup).

Retrying the close() after a failure return is the wrong thing to do, since this may cause a
reused file descriptor from another thread to be closed. This can occur because the
Linux kernel always releases the file descriptor early in the close operation, freeing it for
reuse; the steps that may return an error, such as flushing data to the filesystem or de-
vice, occur only later in the close operation.

Many other implementations similarly always close the file descriptor (except in the
case of EBADF, meaning that the file descriptor was invalid) even if they subsequently
report an error on return from close(). POSIX.1 is currently silent on this point, but
there are plans to mandate this behavior in the next major release of the standard.

A careful programmer who wants to know about 1/0 errors may precede close() with a
call to fsync(2).

The EINTR error is a somewhat special case. Regarding the EINTR error,
POSIX.1-2008 says:

If close() is interrupted by a signal that is to be caught, it shall return =1 with er-
rno set to EINTR and the state of fildes is unspecified.

Linux man-pages 6.8 2024-05-02 136

close(2) System Calls Manual close(2)

This permits the behavior that occurs on Linux and many other implementations, where,
as with other errors that may be reported by close(), the file descriptor is guaranteed to
be closed. However, it also permits another possibility: that the implementation returns
an EINTR error and keeps the file descriptor open. (According to its documentation,
HP-UX’s close() does this.) The caller must then once more use close() to close the file
descriptor, to avoid file descriptor leaks. This divergence in implementation behaviors
provides a difficult hurdle for portable applications, since on many implementations,
close() must not be called again after an EINTR error, and on at least one, close() must
be called again. There are plans to address this conundrum for the next major release of
the POSIX.1 standard.

SEE ALSO
close_range(2), fcntl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

Linux man-pages 6.8 2024-05-02 137

close_range(2) System Calls Manual close_range(2)

NAME

close_range — close all file descriptors in a given range
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE I* See feature_test_macros(7) */
#include <unistd.h>

#include <linux/close_range.h> /* Definition of CLOSE_RANGE_*
constants */

int close_range(unsigned int first, unsigned int last, int flags);

DESCRIPTION

The close_range() system call closes all open file descriptors from first to last (in-
cluded).

Errors closing a given file descriptor are currently ignored.
flags is a bit mask containing 0 or more of the following:

CLOSE_RANGE_CLOEXEC (since Linux 5.11)
Set the close-on-exec flag on the specified file descriptors, rather than immedi-
ately closing them.

CLOSE_RANGE_UNSHARE
Unshare the specified file descriptors from any other processes before closing
them, avoiding races with other threads sharing the file descriptor table.

RETURN VALUE
On success, close_range() returns 0. On error, —1 is returned and errno is set to indi-
cate the error.

ERRORS
EINVAL
flags is not valid, or first is greater than last.

The following can occur with CLOSE_RANGE_UNSHARE (when constructing the
new descriptor table):

EMFILE
The number of open file descriptors exceeds the limit specified in
Iproc/sys/fs/nr_open (see proc(5)). This error can occur in situations where that
limit was lowered before a call to close range() where the
CLOSE_RANGE_UNSHARE flag is specified.

ENOMEM
Insufficient kernel memory was available.

STANDARDS
None.

HISTORY
FreeBSD. Linux 5.9, glibc 2.34.

Linux man-pages 6.8 2024-05-02 138

close_range(2) System Calls Manual close_range(2)

NOTES
Closing all open file descriptors
To avoid blindly closing file descriptors in the range of possible file descriptors, this is
sometimes implemented (on Linux) by listing open file descriptors in /proc/self/fd/ and
calling close(2) on each one. close_range() can take care of this without requiring
/proc and within a single system call, which provides significant performance benefits.

Closing file descriptors before exec
File descriptors can be closed safely using

/* we don’t want anything past stderr here */
close_range(3, ~0U, CLOSE_RANGE_UNSHARE) ;
execve(....);

CLOSE_RANGE_UNSHARE is conceptually equivalent to

unshare(CLONE_FILES);
close_range(first, last, 0);

but can be more efficient: if the unshared range extends past the current maximum num-
ber of file descriptors allocated in the caller’s file descriptor table (the common case
when last is ~0U), the kernel will unshare a new file descriptor table for the caller up to
first, copying as few file descriptors as possible. This avoids subsequent close(2) calls
entirely; the whole operation is complete once the table is unshared.

Closing files on exec

This is particularly useful in cases where multiple pre-exec setup steps risk conflicting
with each other. For example, setting up a seccomp(2) profile can conflict with a
close_range() call: if the file descriptors are closed before the seccomp(2) profile is set
up, the profile setup can’t use them itself, or control their closure; if the file descriptors
are closed afterwards, the seccomp profile can’t block the close_range() call or any fall-
backs. Using CLOSE_RANGE_CLOEXEC avoids this: the descriptors can be
marked before the seccomp(2) profile is set up, and the profile can control access to
close_range() without affecting the calling process.

EXAMPLES
The program shown below opens the files named in its command-line arguments, dis-
plays the list of files that it has opened (by iterating through the entries in /proc/PID/fd),
uses close_range() to close all file descriptors greater than or equal to 3, and then once
more displays the process’s list of open files. The following example demonstrates the
use of the program:

$ touch /tmp/a /tmp/b /tmp/c

$./a.out /tmp/a /tmp/b /tmp/c
/tmp/a opened as FD 3

/tmp/b opened as FD 4

/tmp/c opened as FD 5
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1l
/proc/self/fd/3 ==> /tmp/a
/proc/self/fd/4 ==> /tmp/b
/proc/self/fd/5 ==> /tmp/b

Linux man-pages 6.8 2024-05-02 139

close_range(2) System Calls Manual close_range(2)

/proc/self/fd/6 ==> /proc/9005/fd

========= About to call close range() =======
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /proc/9005/fd

Note that the lines showing the pathname /proc/9005/fd result from the calls to
opendir(3).

Program source

#define _GNU_SOURCE
#include <dirent.h>
#include <fcntl_h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

/* Show the contents of the symbolic links in /proc/self/fd */

static void
show_fds(void)

{
DIR *dirp;
char path[PATH_MAX], target[PATH_MAX];
ssize_t len;

struct dirent *dp;

dirp = opendir(*'/proc/self/fd");

if (dirp == NULL) {
perror("opendir'™);
exit(EXIT_FAILURE);

¥
for (G5) {
dp = readdir(dirp);
if (dp == NULL)
break;
iT (dp—>d_type == DT_LNK) {
snprintf(path, sizeof(path), "/proc/self/fd/%s",
dp—>d_name);
len = readlink(path, target, sizeof(target));
printf(""%s ==> %.*s\n", path, (int) len, target);
+
+

Linux man-pages 6.8 2024-05-02 140

close_range(2) System Calls Manual close_range(2)

closedir(dirp);
}

int
main(int argc, char *argv[])

{
int fd;

for (size_t j = 1; j < argc; j++) {
fd = open(argv[j]., O_RDONLY);
if (Fd == -1) {

perror(argvlj]):;
exit(EXIT_FAILURE);

}
printf("'%s opened as FD %d\n", argv[j], fd);

}

show_fds();
printf("'========= About to call close_range() =======\n"");

if (close range(3, ~0U, 0) == -1) {
perror(‘'close_range™);
exit(EXIT_FAILURE);

}

show_fds(Q);
ex1t(EXIT_FAILURE);

}

SEE ALSO
close(2)

Linux man-pages 6.8 2024-05-02 141

connect(2) System Calls Manual connect(2)

NAME

connect — initiate a connection on a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
The connect() system call connects the socket referred to by the file descriptor sockfd to
the address specified by addr. The addrlen argument specifies the size of addr. The
format of the address in addr is determined by the address space of the socket sockfd;
see socket(2) for further details.

If the socket sockfd is of type SOCK_DGRAM, then addr is the address to which data-
grams are sent by default, and the only address from which datagrams are received. If
the socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call attempts to
make a connection to the socket that is bound to the address specified by addr.

Some protocol sockets (e.g., UNIX domain stream sockets) may successfully connect()
only once.

Some protocol sockets (e.g., datagram sockets in the UNIX and Internet domains) may
use connect() multiple times to change their association.

Some protocol sockets (e.g., TCP sockets as well as datagram sockets in the UNIX and
Internet domains) may dissolve the association by connecting to an address with the
sa_family member of sockaddr set to AF_UNSPEC; thereafter, the socket can be con-
nected to another address. (AF_UNSPEC is supported since Linux 2.2.)

RETURN VALUE

If the connection or binding succeeds, zero is returned. On error, -1 is returned, and er-
rno is set to indicate the error.

ERRORS
The following are general socket errors only. There may be other domain-specific error
codes.

EACCES
For UNIX domain sockets, which are identified by pathname: Write permission
is denied on the socket file, or search permission is denied for one of the directo-
ries in the path prefix. (See also path_resolution(7).)

EACCES

EPERM
The user tried to connect to a broadcast address without having the socket broad-
cast flag enabled or the connection request failed because of a local firewall rule.

EACCES
It can also be returned if an SELinux policy denied a connection (for example, if
there is a policy saying that an HTTP proxy can only connect to ports associated
with HTTP servers, and the proxy tries to connect to a different port).

Linux man-pages 6.8 2024-05-02 142

connect(2) System Calls Manual connect(2)

EADDRINUSE
Local address is already in use.

EADDRNOTAVAIL
(Internet domain sockets) The socket referred to by sockfd had not previously
been bound to an address and, upon attempting to bind it to an ephemeral port, it
was determined that all port numbers in the ephemeral port range are currently in
use. See the discussion of /proc/sys/net/ipv4/ip_local_port_range in ip(7).

EAFNOSUPPORT
The passed address didn’t have the correct address family in its sa_family field.

EAGAIN
For nonblocking UNIX domain sockets, the socket is nonblocking, and the con-
nection cannot be completed immediately. For other socket families, there are
insufficient entries in the routing cache.

EALREADY
The socket is nonblocking and a previous connection attempt has not yet been
completed.

EBADF
sockfd is not a valid open file descriptor.

ECONNREFUSED
A connect() on a stream socket found no one listening on the remote address.

EFAULT
The socket structure address is outside the user’s address space.

EINPROGRESS

The socket is nonblocking and the connection cannot be completed immediately.
(UNIX domain sockets failed with EAGAIN instead.) It is possible to select(2)
or poll(2) for completion by selecting the socket for writing. After select(2) in-
dicates writability, use getsockopt(2) to read the SO_ERROR option at level
SOL_SOCKET to determine whether connect() completed successfully
(SO_ERROR s zero) or unsuccessfully (SO_ERROR is one of the usual error
codes listed here, explaining the reason for the failure).

EINTR
The system call was interrupted by a signal that was caught; see signal(7).
EISCONN
The socket is already connected.
ENETUNREACH
Network is unreachable.
ENOTSOCK
The file descriptor sockfd does not refer to a socket.
EPROTOTYPE

The socket type does not support the requested communications protocol. This
error can occur, for example, on an attempt to connect a UNIX domain datagram
socket to a stream socket.

Linux man-pages 6.8 2024-05-02 143

connect(2) System Calls Manual connect(2)

ETIMEDOUT
Timeout while attempting connection. The server may be too busy to accept new
connections. Note that for IP sockets the timeout may be very long when syn-
cookies are enabled on the server.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD, (connect() first appeared in 4.2BSD).

NOTES

If connect() fails, consider the state of the socket as unspecified. Portable applications
should close the socket and create a new one for reconnecting.

EXAMPLES
An example of the use of connect() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), getsockname(2), listen(2), socket(2), path_resolution(7), selinux(8)

Linux man-pages 6.8 2024-05-02 144

copy_file_range(2) System Calls Manual copy_file_range(2)

NAME

copy_file_range — Copy a range of data from one file to another
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE
#define FILE _OFFSET BITS 64
#include <unistd.h>

ssize_t copy_file_range(int fd_in, off_t *_Nullable off_in,
int fd_out, off _t* Nullable off out,
size_t len, unsigned int flags);

DESCRIPTION
The copy_file_range() system call performs an in-kernel copy between two file descrip-
tors without the additional cost of transferring data from the kernel to user space and
then back into the kernel. It copies up to len bytes of data from the source file descriptor
fd_in to the target file descriptor fd_out, overwriting any data that exists within the re-
quested range of the target file.

The following semantics apply for off_in, and similar statements apply to off_out:

e If off_in is NULL, then bytes are read from fd_in starting from the file offset, and
the file offset is adjusted by the number of bytes copied.

e If off_in is not NULL, then off_in must point to a buffer that specifies the starting
offset where bytes from fd_in will be read. The file offset of fd_in is not changed,
but off_in is adjusted appropriately.

fd_in and fd_out can refer to the same file. If they refer to the same file, then the
source and target ranges are not allowed to overlap.

The flags argument is provided to allow for future extensions and currently must be set
to 0.

RETURN VALUE
Upon successful completion, copy_file_range() will return the number of bytes copied
between files. This could be less than the length originally requested. If the file offset
of fd_in is at or past the end of file, no bytes are copied, and copy_file_range() returns
zero.

On error, copy_file_range() returns —1 and errno is set to indicate the error.

ERRORS
EBADF
One or more file descriptors are not valid.

EBADF
fd_in is not open for reading; or fd_out is not open for writing.

EBADF
The O_APPEND flag is set for the open file description (see open(2)) referred to
by the file descriptor fd_out.

Linux man-pages 6.8 2024-05-02 145

copy_file_range(2) System Calls Manual copy_file_range(2)

EFBIG
An attempt was made to write at a position past the maximum file offset the ker-
nel supports.

EFBIG
An attempt was made to write a range that exceeds the allowed maximum file
size. The maximum file size differs between filesystem implementations and can
be different from the maximum allowed file offset.

EFBIG
An attempt was made to write beyond the process’s file size resource limit. This
may also result in the process receiving a SIGXFSZ signal.

EINVAL
The flags argument is not 0.

EINVAL
fd_in and fd_out refer to the same file and the source and target ranges overlap.

EINVAL
Either fd_in or fd_out is not a regular file.

EIO A low-level 1/O error occurred while copying.

EISDIR
Either fd_in or fd_out refers to a directory.

ENOMEM
Out of memory.

ENOSPC
There is not enough space on the target filesystem to complete the copy.

EOPNOTSUPP (since Linux 5.19)
The filesystem does not support this operation.

EOVERFLOW
The requested source or destination range is too large to represent in the speci-
fied data types.

EPERM
fd_out refers to an immutable file.

ETXTBSY
Either fd_in or fd_out refers to an active swap file.

EXDEYV (before Linux 5.3)
The files referred to by fd_in and fd_out are not on the same filesystem.

EXDEV (since Linux 5.19)
The files referred to by fd_in and fd_out are not on the same filesystem, and the
source and target filesystems are not of the same type, or do not support cross-
filesystem copy.

VERSIONS
A major rework of the kernel implementation occurred in Linux 5.3. Areas of the API
that weren’t clearly defined were clarified and the APl bounds are much more strictly
checked than on earlier kernels.

Linux man-pages 6.8 2024-05-02 146

copy_file_range(2) System Calls Manual copy_file_range(2)

Since Linux 5.19, cross-filesystem copies can be achieved when both filesystems are of
the same type, and that filesystem implements support for it. See BUGS for behavior
prior to Linux 5.19.

Applications should target the behaviour and requirements of Linux 5.19, that was also
backported to earlier stable kernels.

STANDARDS
Linux, GNU.

HISTORY
Linux 4.5, but glibc 2.27 provides a user-space emulation when it is not available.

NOTES
If fd_in is a sparse file, then copy_file_range() may expand any holes existing in the re-
quested range. Users may benefit from calling copy_file_range() in a loop, and using
the Iseek(2) SEEK_DATA and SEEK_HOLE operations to find the locations of data
segments.

copy_file_range() gives filesystems an opportunity to implement "copy acceleration"
techniques, such as the use of reflinks (i.e., two or more inodes that share pointers to the
same copy-on-write disk blocks) or server-side-copy (in the case of NFS).

_FILE_OFFSET _BITS should be defined to be 64 in code that uses non-null off in or
off out or that takes the address of copy_file_range, if the code is intended to be
portable to traditional 32-bit x86 and ARM platforms where off_t’s width defaults to 32
bits.

BUGS
In Linux 5.3 to Linux 5.18, cross-filesystem copies were implemented by the kernel, if
the operation was not supported by individual filesystems. However, on some virtual
filesystems, the call failed to copy, while still reporting success.

EXAMPLES

#define _GNU_SOURCE

#define FILE OFFSET BITS 64
#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int

main(int argc, char *argv[])

{
int fd_in, fd_out;
off_t len, ret;

struct stat stat;
it (argc = 3) {

fprintf(stderr, "Usage: %s <source> <destination>\n", argv[0]
exit(EXIT_FAILURE);

Linux man-pages 6.8 2024-05-02 147

copy_file_range(2) System Calls Manual copy_file_range(2)

}

fd_in = open(argv[1l], O_RDONLY);

if (fd_in == -1) {
perror(“'open (argv[1i])'™);
exit(EXIT_FAILURE);

}

if (fstat(fd_in, &stat) == -1) {
perror(“'fstat™);
exit(EXIT_FAILURE);

}

len = stat.st_size;

fd_out = open(argv[2], O CREAT | O_WRONLY | O_TRUNC, 0644);
if (fd_out == -1) {

perror(“'open (argv[2])™);

exit(EXIT_FAILURE);
}

do {
ret = copy_file _range(fd_in, NULL, fd out, NULL, len, 0);
if (ret == -1) {
perror("'copy_file_range™);
exit(EXIT_FAILURE);
}

len —-= ret;
} while (len > 0 && ret > 0);

close(fd_in);
close(fd _out);
exit(EXIT_SUCCESS);

}

SEE ALSO
Iseek(2), sendfile(2), splice(2)

Linux man-pages 6.8 2024-05-02 148

create_module(2) System Calls Manual create_module(2)

NAME
create_module — create a loadable module entry

SYNOPSIS

#include <linux/module.h>
[[deprecated]] caddr_t create_module(const char *name, size_t size);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

create_module() attempts to create a loadable module entry and reserve the kernel
memory that will be needed to hold the module. This system call requires privilege.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On error, -1 is
returned and errno is set to indicate the error.

ERRORS
EEXIST
A module by that name already exists.

EFAULT
name is outside the program’s accessible address space.

EINVAL
The requested size is too small even for the module header information.

ENOMEM
The kernel could not allocate a contiguous block of memory large enough for the
module.

ENOSYS
create_module() is not supported in this version of the kernel (e.g., Linux 2.6 or
later).

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity).
STANDARDS
Linux.

HISTORY
Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in glibc
headers, but, through a quirk of history, glibc versions before glibc 2.23 did export an
ABI for this system call. Therefore, in order to employ this system call, it was sufficient
to manually declare the interface in your code; alternatively, you could invoke the sys-
tem call using syscall(2).

SEE ALSO
delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.8 2024-05-02 149

delete_module(2) System Calls Manual delete_module(2)

NAME
delete_module — unload a kernel module
LIBRARY
Standard C library (libc, —Ic)
SYNOPSIS
#include <fcntl.h> [* Definition of O_* constants */

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_delete_module, const char *name, unsigned int flags);
Note: glibc provides no wrapper for delete_module(), necessitating the use of
syscall(2).

DESCRIPTION
The delete_module() system call attempts to remove the unused loadable module entry
identified by name. If the module has an exit function, then that function is executed be-
fore unloading the module. The flags argument is used to modify the behavior of the
system call, as described below. This system call requires privilege.

Module removal is attempted according to the following rules:

(1) If there are other loaded modules that depend on (i.e., refer to symbols defined in)
this module, then the call fails.

(2) Otherwise, if the reference count for the module (i.e., the number of processes
currently using the module) is zero, then the module is immediately unloaded.

(3) If amodule has a nonzero reference count, then the behavior depends on the bits
set in flags. In normal usage (see NOTES), the O_NONBLOCK flag is always
specified, and the O_TRUNC flag may additionally be specified.

The various combinations for flags have the following effect:

flags == O_NONBLOCK
The call returns immediately, with an error.

flags == (O_NONBLOCK | O_TRUNC)
The module is unloaded immediately, regardless of whether it has a
nonzero reference count.

(flags & O_NONBLOCK) ==
If flags does not specify O_NONBLOCK, the following steps occur:

* The module is marked so that no new references are permitted.

» If the module’s reference count is nonzero, the caller is placed in an
uninterruptible sleep state (TASK_UNINTERRUPTIBLE) until the
reference count is zero, at which point the call unblocks.

e The module is unloaded in the usual way.

The O_TRUNC flag has one further effect on the rules described above. By default, if a
module has an init function but no exit function, then an attempt to remove the module
fails. However, if O_TRUNC was specified, this requirement is bypassed.

Using the O_TRUNC flag is dangerous! If the kernel was not built with

Linux man-pages 6.8 2024-05-02 150

delete_module(2) System Calls Manual delete_module(2)

CONFIG_MODULE_FORCE_UNLOAD, this flag is silently ignored. (Normally,
CONFIG_MODULE_FORCE_UNLOAD is enabled.) Using this flag taints the ker-
nel (TAINT_FORCED_RMMOD).

RETURN VALUE
On success, zero is returned. On error, —1 is returned and errno is set to indicate the er-
ror.

ERRORS
EBUSY
The module is not "live" (i.e., it is still being initialized or is already marked for
removal); or, the module has an init function but has no exit function, and
O_TRUNC was not specified in flags.

EFAULT
name refers to a location outside the process’s accessible address space.

ENOENT
No module by that name exists.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity), or module unloading is disabled (see /proc/sys/kernel/modules_disabled in
proc(5)).

EWOULDBLOCK
Other modules depend on this module; or, O_NONBLOCK was specified in
flags, but the reference count of this module is nonzero and O_TRUNC was not
specified in flags.

STANDARDS
Linux.

HISTORY
The delete_module() system call is not supported by glibc. No declaration is provided
in glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did ex-
port an ABI for this system call. Therefore, in order to employ this system call, it is (be-
fore glibc 2.23) sufficient to manually declare the interface in your code; alternatively,
you can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the system call took only one argument:

int delete_module(const char *name);
If name is NULL, all unused modules marked auto-clean are removed.

Some further details of differences in the behavior of delete_module() in Linux 2.4 and
earlier are not currently explained in this manual page.

NOTES
The uninterruptible sleep that may occur if O_NONBLOCK is omitted from flags is
considered undesirable, because the sleeping process is left in an unkillable state. As at
Linux 3.7, specifying O_NONBLOCK is optional, but in future kernels it is likely to
become mandatory.

Linux man-pages 6.8 2024-05-02 151

delete_module(2) System Calls Manual delete_module(2)

SEE ALSO
create_module(2), init_module(2), query_module(2), Ismod(8), modprobe(8), rmmod(8)

Linux man-pages 6.8 2024-05-02 152

dup(2) System Calls Manual dup(2)

NAME
dup, dup2, dup3 - duplicate a file descriptor

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

#define _GNU_SOURCE [* See feature_test_macros(7) */
#include <fcntl.h> [* Definition of O_* constants */
#include <unistd.h>

int dup3(int oldfd, int newfd, int flags);

DESCRIPTION
The dup() system call allocates a new file descriptor that refers to the same open file de-
scription as the descriptor oldfd. (For an explanation of open file descriptions, see
open(2).) The new file descriptor number is guaranteed to be the lowest-numbered file
descriptor that was unused in the calling process.

After a successful return, the old and new file descriptors may be used interchangeably.
Since the two file descriptors refer to the same open file description, they share file off-
set and file status flags; for example, if the file offset is modified by using Iseek(2) on
one of the file descriptors, the offset is also changed for the other file descriptor.

The two file descriptors do not share file descriptor flags (the close-on-exec flag). The
close-on-exec flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup2()
The dup2() system call performs the same task as dup(), but instead of using the lowest-
numbered unused file descriptor, it uses the file descriptor number specified in newfd.
In other words, the file descriptor newfd is adjusted so that it now refers to the same
open file description as oldfd.

If the file descriptor newfd was previously open, it is closed before being reused; the
close is performed silently (i.e., any errors during the close are not reported by dup2())

The steps of closing and reusing the file descriptor newfd are performed atomically.
This is important, because trying to implement equivalent functionality using close(2)
and dup() would be subject to race conditions, whereby newfd might be reused between
the two steps. Such reuse could happen because the main program is interrupted by a
signal handler that allocates a file descriptor, or because a parallel thread allocates a file
descriptor.

Note the following points:
» If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

» If oldfd is a valid file descriptor, and newfd has the same value as oldfd, then dup2()
does nothing, and returns newfd.

Linux man-pages 6.8 2024-05-02 153

dup(2) System Calls Manual dup(2)

dup3()
dup3() is the same as dup2(), except that:

* The caller can force the close-on-exec flag to be set for the new file descriptor by
specifying O_CLOEXEC in flags. See the description of the same flag in open(2)
for reasons why this may be useful.

» If oldfd equals newfd, then dup3() fails with the error EINVAL.

RETURN VALUE
On success, these system calls return the new file descriptor. On error, —1 is returned,
and errno is set to indicate the error.

ERRORS
EBADF
oldfd isn’t an open file descriptor.

EBADF
newfd is out of the allowed range for file descriptors (see the discussion of
RLIMIT_NOFILE in getrlimit(2)).

EBUSY
(Linux only) This may be returned by dup2() or dup3() during a race condition
with open(2) and dup().
EINTR
The dup2() or dup3() call was interrupted by a signal; see signal(7).
EINVAL
(dup3()) flags contain an invalid value.
EINVAL
(dup3()) oldfd was equal to newfd.
EMFILE

The per-process limit on the number of open file descriptors has been reached
(see the discussion of RLIMIT_NOFILE in getrlimit(2)).

STANDARDS
dup()
dup2()
POSIX.1-2008.
dup3()
Linux.
HISTORY
dup()
dup2()
POSIX.1-2001, SVr4, 4.3BSD.
dup3()
Linux 2.6.27, glibc 2.9.

NOTES
The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...)
when newfd is out of range. On some systems, dup2() also sometimes returns EINVAL

Linux man-pages 6.8 2024-05-02 154

dup(2) System Calls Manual dup(2)

like F_DUPFD.

If newfd was open, any errors that would have been reported at close(2) time are lost. If
this is of concern, then—unless the program is single-threaded and does not allocate file
descriptors in signal handlers—the correct approach is not to close newfd before calling
dup?2(), because of the race condition described above. Instead, code something like the
following could be used:

/* Obtain a duplicate of "newfd" that can subsequently
be used to check for close() errors; an EBADF error
means that "newfd® was not open. */

tmpfd = dup(newfd);
iT (tmpfd == -1 && errno != EBADF) {

/* Handle unexpected dup() error. */
}

/* Atomically duplicate “oldfd® on "newfd". */

if (dup2(oldfd, newfd) == -1) {
/* Handle dup2() error. */
}

/* Now check for close() errors on the file originally
referred to by "newfd". */

if (tmpfd '= -1) {
it (close(tmpfd) == -1) {
/* Handle errors from close. */

}
}

SEE ALSO
close(2), fentl(2), open(2), pidfd_getfd(2)

Linux man-pages 6.8 2024-05-02 155

epoll_create(2) System Calls Manual epoll_create(2)

NAME
epoll_create, epoll_createl — open an epoll file descriptor

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/epoll.h>

int epoll_create(int size);
int epoll_createl(int flags);

DESCRIPTION
epoll_create() creates a new epoll(7) instance. Since Linux 2.6.8, the size argument is
ignored, but must be greater than zero; see HISTORY.

epoll_create() returns a file descriptor referring to the new epoll instance. This file de-
scriptor is used for all the subsequent calls to the epoll interface. When no longer re-
quired, the file descriptor returned by epoll_create() should be closed by using close(2).
When all file descriptors referring to an epoll instance have been closed, the kernel de-
stroys the instance and releases the associated resources for reuse.

epoll_createl()
If flags is O, then, other than the fact that the obsolete size argument is dropped,
epoll_createl() is the same as epoll_create(). The following value can be included in
flags to obtain different behavior:

EPOLL_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

RETURN VALUE
On success, these system calls return a file descriptor (a nonnegative integer). On error,
-1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL
size is not positive.
EINVAL
(epoll_createl()) Invalid value specified in flags.
EMFILE
The per-process limit on the number of open file descriptors has been reached.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENOMEM
There was insufficient memory to create the kernel object.
STANDARDS
Linux.

Linux man-pages 6.8 2024-05-02 156

epoll_create(2) System Calls Manual epoll_create(2)

HISTORY
epoll_create()
Linux 2.6, glibc 2.3.2.

epoll_createl()
Linux 2.6.27, glibc 2.9.

In the initial epoll_create() implementation, the size argument informed the kernel of
the number of file descriptors that the caller expected to add to the epoll instance. The
kernel used this information as a hint for the amount of space to initially allocate in in-
ternal data structures describing events. (If necessary, the kernel would allocate more
space if the caller’s usage exceeded the hint given in size.) Nowadays, this hint is no
longer required (the kernel dynamically sizes the required data structures without need-
ing the hint), but size must still be greater than zero, in order to ensure backward com-
patibility when new epoll applications are run on older kernels.

Prior to Linux 2.6.29, a /proc/sys/fs/epoll/max_user_instances kernel parameter limited
live epolls for each real user ID, and caused epoll_create() to fail with EMFILE on
overrun.

SEE ALSO
close(2), epoll_ctl(2), epoll_wait(2), epoll(7)

Linux man-pages 6.8 2024-05-02 157

epoll_ctl(2) System Calls Manual epoll_ctl(2)

NAME

epoll_ctl — control interface for an epoll file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/epoll.h>

int epoll_ctl(int epfd, int op, int fd,
struct epoll_event *_Nullable event);

DESCRIPTION
This system call is used to add, modify, or remove entries in the interest list of the
epoll(7) instance referred to by the file descriptor epfd. It requests that the operation op
be performed for the target file descriptor, fd.

Valid values for the op argument are:

EPOLL_CTL_ADD
Add an entry to the interest list of the epoll file descriptor, epfd. The entry in-
cludes the file descriptor, fd, a reference to the corresponding open file descrip-
tion (see epoll(7) and open(2)), and the settings specified in event.

EPOLL_CTL_MOD
Change the settings associated with fd in the interest list to the new settings
specified in event.

EPOLL_CTL_DEL
Remove (deregister) the target file descriptor fd from the interest list. The event
argument is ignored and can be NULL (but see BUGS below).

The event argument describes the object linked to the file descriptor fd. The struct
epoll_event is described in epoll_event(3type).

The data member of the epoll_event structure specifies data that the kernel should save
and then return (via epoll_wait(2)) when this file descriptor becomes ready.

The events member of the epoll_event structure is a bit mask composed by ORing to-
gether zero or more event types, returned by epoll_wait(2), and input flags, which affect
its behaviour, but aren’t returned. The available event types are:

EPOLLIN
The associated file is available for read(2) operations.

EPOLLOUT
The associated file is available for write(2) operations.

EPOLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connection.
(This flag is especially useful for writing simple code to detect peer shutdown
when using edge-triggered monitoring.)

EPOLLPRI
There is an exceptional condition on the file descriptor. See the discussion of
POLLPRI in poll(2).

Linux man-pages 6.8 2024-05-02 158

epoll_ctl(2) System Calls Manual epoll_ctl(2)

EPOLLERR
Error condition happened on the associated file descriptor. This event is also re-
ported for the write end of a pipe when the read end has been closed.

epoll_wait(2) will always report for this event; it is not necessary to set it in
events when calling epoll_ctl().

EPOLLHUP
Hang up happened on the associated file descriptor.

epoll_wait(2) will always wait for this event; it is not necessary to set it in events
when calling epoll_ctl().

Note that when reading from a channel such as a pipe or a stream socket, this
event merely indicates that the peer closed its end of the channel. Subsequent
reads from the channel will return O (end of file) only after all outstanding data in
the channel has been consumed.

And the available input flags are:

EPOLLET
Requests edge-triggered notification for the associated file descriptor. The de-
fault behavior for epoll is level-triggered. See epoll(7) for more detailed infor-
mation about edge-triggered and level-triggered notification.

EPOLLONESHOT (since Linux 2.6.2)
Requests one-shot notification for the associated file descriptor. This means that
after an event notified for the file descriptor by epoll_wait(2), the file descriptor
is disabled in the interest list and no other events will be reported by the epoll in-
terface. The user must call epoll_ctl() with EPOLL_CTL_MOD to rearm the
file descriptor with a new event mask.

EPOLLWAKEUP (since Linux 3.5)

If EPOLLONESHOT and EPOLLET are clear and the process has the
CAP_BLOCK_SUSPEND capability, ensure that the system does not enter
"suspend™ or "hibernate” while this event is pending or being processed. The
event is considered as being "processed” from the time when it is returned by a
call to epoll_wait(2) until the next call to epoll_wait(2) on the same epoll(7) file
descriptor, the closure of that file descriptor, the removal of the event file de-
scriptor with EPOLL_CTL_DEL, or the clearing of EPOLLWAKEUP for the
event file descriptor with EPOLL_CTL_MOD. See also BUGS.

EPOLLEXCLUSIVE (since Linux 4.5)

Sets an exclusive wakeup mode for the epoll file descriptor that is being attached
to the target file descriptor, fd. When a wakeup event occurs and multiple epoll
file descriptors are attached to the same target file using EPOLLEXCLUSIVE,
one or more of the epoll file descriptors will receive an event with epoll_wait(2).
The default in this scenario (when EPOLLEXCLUSIVE is not set) is for all
epoll file descriptors to receive an event. EPOLLEXCLUSIVE is thus useful
for avoiding thundering herd problems in certain scenarios.

If the same file descriptor is in multiple epoll instances, some with the
EPOLLEXCLUSIVE flag, and others without, then events will be provided to
all epoll instances that did not specify EPOLLEXCLUSIVE, and at least one of

Linux man-pages 6.8 2024-05-02 159

epoll_ctl(2) System Calls Manual epoll_ctl(2)

the epoll instances that did specify EPOLLEXCLUSIVE.

The following values may be specified in conjunction with EPOLLEXCLU-
SIVE: EPOLLIN, EPOLLOUT, EPOLLWAKEUP, and EPOLLET.
EPOLLHUP and EPOLLERR can also be specified, but this is not required: as
usual, these events are always reported if they occur, regardless of whether they
are specified in events. Attempts to specify other values in events yield the error
EINVAL.

EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD operation;
attempts to employ it with EPOLL_CTL_MOD vyield an error. If EPOLLEX-
CLUSIVE has been set using epoll _ctl(), then a subsequent
EPOLL_CTL_MOD on the same epfd, fd pair yields an error. A call to
epoll_ctl() that specifies EPOLLEXCLUSIVE in events and specifies the target
file descriptor fd as an epoll instance will likewise fail. The error in all of these
cases is EINVAL.

RETURN VALUE
When successful, epoll_ctl() returns zero. When an error occurs, epoll_ctl() returns -1
and errno is set to indicate the error.

ERRORS
EBADF
epfd or fd is not a valid file descriptor.

EEXIST
op was EPOLL_CTL_ADD, and the supplied file descriptor fd is already regis-
tered with this epoll instance.

EINVAL
epfd is not an epoll file descriptor, or fd is the same as epfd, or the requested op-
eration op is not supported by this interface.

EINVAL
An invalid event type was specified along with EPOLLEXCLUSIVE in events.

EINVAL
op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE.

EINVAL
op was EPOLL_CTL_MOD and the EPOLLEXCLUSIVE flag has previously
been applied to this epfd, fd pair.

EINVAL
EPOLLEXCLUSIVE was specified in event and fd refers to an epoll instance.

ELOOP
fd refers to an epoll instance and this EPOLL_CTL_ADD operation would re-
sult in a circular loop of epoll instances monitoring one another or a nesting
depth of epoll instances greater than 5.

ENOENT
op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered
with this epoll instance.

Linux man-pages 6.8 2024-05-02 160

epoll_ctl(2) System Calls Manual epoll_ctl(2)

ENOMEM
There was insufficient memory to handle the requested op control operation.

ENOSPC
The limit imposed by /proc/sys/fs/epoll/max_user_watches was encountered
while trying to register (EPOLL_CTL_ADD) a new file descriptor on an epoll
instance. See epoll(7) for further details.

EPERM
The target file fd does not support epoll. This error can occur if fd refers to, for
example, a regular file or a directory.

STANDARDS

Linux.

HISTORY
Linux 2.6, glibc 2.3.2.

NOTES
The epoll interface supports all file descriptors that support poll(2).

BUGS
Before Linux 2.6.9, the EPOLL_CTL_DEL operation required a non-null pointer in
event, even though this argument is ignored. Since Linux 2.6.9, event can be specified
as NULL when using EPOLL_CTL_DEL. Applications that need to be portable to
kernels before Linux 2.6.9 should specify a non-null pointer in event.

If EPOLLWAKEUP is specified in flags, but the caller does not have the
CAP_BLOCK_SUSPEND capability, then the EPOLLWAKEUP flag is silently ig-
nored. This unfortunate behavior is necessary because no validity checks were per-
formed on the flags argument in the original implementation, and the addition of the
EPOLLWAKEUP with a check that caused the call to fail if the caller did not have the
CAP_BLOCK_SUSPEND capability caused a breakage in at least one existing user-
space application that happened to randomly (and uselessly) specify this bit. A robust
application should therefore double check that it has the CAP_BLOCK_SUSPEND ca-
pability if attempting to use the EPOLLWAKEUP flag.

SEE ALSO
epoll_create(2), epoll_wait(2), poll(2), epoll(7)

Linux man-pages 6.8 2024-05-02 161

epoll_wait(2) System Calls Manual epoll_wait(2)

NAME

epoll_wait, epoll_pwait, epoll_pwait2 — wait for an 1/O event on an epoll file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/epoll.h>

int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t*_Nullable sigmask);
int epoll_pwait2(int epfd, struct epoll_event *events,
int maxevents, const struct timespec *_Nullable timeout,
const sigset_t *_ Nullable sigmask);

DESCRIPTION
The epoll_wait() system call waits for events on the epoll(7) instance referred to by the
file descriptor epfd. The buffer pointed to by events is used to return information from
the ready list about file descriptors in the interest list that have some events available.
Up to maxevents are returned by epoll_wait(). The maxevents argument must be greater
than zero.

The timeout argument specifies the number of milliseconds that epoll_wait() will block.
Time is measured against the CLOCK_MONOTONIC clock.

A call to epoll_wait() will block until either:

» afile descriptor delivers an event;

» the call is interrupted by a signal handler; or
» the timeout expires.

Note that the timeout interval will be rounded up to the system clock granularity, and
kernel scheduling delays mean that the blocking interval may overrun by a small
amount. Specifying a timeout of -1 causes epoll_wait() to block indefinitely, while
specifying a timeout equal to zero causes epoll_wait() to return immediately, even if no
events are available.

The struct epoll_event is described in epoll_event(3type).

The data field of each returned epoll_event structure contains the same data as was
specified in the most recent call to epoll ctl(2) (EPOLL_CTL_ADD,
EPOLL_CTL_MOD) for the corresponding open file descriptor.

The events field is a bit mask that indicates the events that have occurred for the corre-
sponding open file description. See epoll_ctl(2) for a list of the bits that may appear in
this mask.

epoll_pwait()
The relationship between epoll_wait() and epoll_pwait() is analogous to the relation-

ship between select(2) and pselect(2): like pselect(2), epoll_pwait() allows an applica-
tion to safely wait until either a file descriptor becomes ready or until a signal is caught.

Linux man-pages 6.8 2024-05-02 162

epoll_wait(2) System Calls Manual epoll_wait(2)

The following epoll_pwait() call:
ready = epoll_pwait(epfd, &events, maxevents, timeout, &sigmask);
is equivalent to atomically executing the following calls:

sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = epoll_wait(epfd, &events, maxevents, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The sigmask argument may be specified as NULL, in which case epoll_pwait() is
equivalent to epoll_wait().

epoll_pwait2()
The epoll_pwait2() system call is equivalent to epoll_pwait() except for the timeout ar-
gument. It takes an argument of type timespec to be able to specify nanosecond resolu-
tion timeout. This argument functions the same as in pselect(2) and ppoll(2). If timeout
is NULL, then epoll_pwait2() can block indefinitely.
RETURN VALUE
On success, epoll_wait() returns the number of file descriptors ready for the requested

I/0 operation, or zero if no file descriptor became ready during the requested timeout
milliseconds. On failure, epoll_wait() returns —1 and errno is set to indicate the error.

ERRORS
EBADF
epfd is not a valid file descriptor.

EFAULT
The memory area pointed to by events is not accessible with write permissions.

EINTR
The call was interrupted by a signal handler before either (1) any of the re-
quested events occurred or (2) the timeout expired; see signal(7).

EINVAL
epfd is not an epoll file descriptor, or maxevents is less than or equal to zero.

STANDARDS
Linux.

HISTORY
epoll_wait()
Linux 2.6, glibc 2.3.2.
epoll_pwait()
Linux 2.6.19, glibc 2.6.

epoll_pwait2()
Linux 5.11.

NOTES
While one thread is blocked in a call to epoll_wait(), it is possible for another thread to
add a file descriptor to the waited-upon epoll instance. If the new file descriptor be-
comes ready, it will cause the epoll_wait() call to unblock.

Linux man-pages 6.8 2024-05-02 163

epoll_wait(2) System Calls Manual epoll_wait(2)

If more than maxevents file descriptors are ready when epoll_wait() is called, then suc-
cessive epoll_wait() calls will round robin through the set of ready file descriptors. This
behavior helps avoid starvation scenarios, where a process fails to notice that additional
file descriptors are ready because it focuses on a set of file descriptors that are already
known to be ready.

Note that it is possible to call epoll_wait() on an epoll instance whose interest list is cur-
rently empty (or whose interest list becomes empty because file descriptors are closed or
removed from the interest in another thread). The call will block until some file descrip-
tor is later added to the interest list (in another thread) and that file descriptor becomes
ready.

C library/kernel differences
The raw epoll_pwait() and epoll_pwait2() system calls have a sixth argument, size_t
sigsetsize, which specifies the size in bytes of the sigmask argument. The glibc
epoll_pwait() wrapper function specifies this argument as a fixed value (equal to
sizeof(sigset_t)).

BUGS
Before Linux 2.6.37, a timeout value larger than approximately LONG_MAX / HZ mil-
liseconds is treated as —1 (i.e., infinity). Thus, for example, on a system where
sizeof(long) is 4 and the kernel HZ value is 1000, this means that timeouts greater than
35.79 minutes are treated as infinity.

SEE ALSO
epoll_create(2), epoll_ctl(2), epoll(7)

Linux man-pages 6.8 2024-05-02 164

eventfd(2) System Calls Manual eventfd(2)

NAME

eventfd — create a file descriptor for event notification
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/eventfd.h>
int eventfd(unsigned int initval, int flags);

DESCRIPTION
eventfd() creates an "eventfd object” that can be used as an event wait/notify mechanism
by user-space applications, and by the kernel to notify user-space applications of events.
The object contains an unsigned 64-bit integer (uint64_t) counter that is maintained by
the kernel. This counter is initialized with the value specified in the argument initval.

As its return value, eventfd() returns a new file descriptor that can be used to refer to the
eventfd object.

The following values may be bitwise ORed in flags to change the behavior of eventfd():

EFD_CLOEXEC (since Linux 2.6.27)
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

EFD_NONBLOCK (since Linux 2.6.27)
Set the O_NONBLOCK file status flag on the open file description (see
open(2)) referred to by the new file descriptor. Using this flag saves extra calls
to fcntl(2) to achieve the same result.

EFD_SEMAPHORE (since Linux 2.6.30)
Provide semaphore-like semantics for reads from the new file descriptor. See be-
low.

Up to Linux 2.6.26, the flags argument is unused, and must be specified as zero.
The following operations can be performed on the file descriptor returned by eventfd():

read(2)
Each successful read(2) returns an 8-byte integer. A read(2) fails with the error
EINVAL if the size of the supplied buffer is less than 8 bytes.

The value returned by read(2) is in host byte order—that is, the native byte order
for integers on the host machine.

The semantics of read(2) depend on whether the eventfd counter currently has a
nonzero value and whether the EFD_SEMAPHORE flag was specified when
creating the eventfd file descriptor:

 If EFD_SEMAPHORE was not specified and the eventfd counter has a
nonzero value, then a read(2) returns 8 bytes containing that value, and the
counter’s value is reset to zero.

» If EFD_SEMAPHORE was specified and the eventfd counter has a nonzero
value, then a read(2) returns 8 bytes containing the value 1, and the counter’s
value is decremented by 1.

Linux man-pages 6.8 2024-05-02 165

eventfd(2) System Calls Manual eventfd(2)

» If the eventfd counter is zero at the time of the call to read(2), then the call
either blocks until the counter becomes nonzero (at which time, the read(2)
proceeds as described above) or fails with the error EAGAIN if the file de-
scriptor has been made nonblocking.

write(2)
A write(2) call adds the 8-byte integer value supplied in its buffer to the counter.
The maximum value that may be stored in the counter is the largest unsigned
64-bit value minus 1 (i.e., Oxfffffffffffffffe). If the addition would cause the
counter’s value to exceed the maximum, then the write(2) either blocks until a
read(2) is performed on the file descriptor, or fails with the error EAGAIN if the
file descriptor has been made nonblocking.

A write(2) fails with the error EINVAL if the size of the supplied buffer is less
than 8 bytes, or if an attempt is made to write the value Oxfffffffffffffff.

poll(2)

select(2)

(and similar)
The returned file descriptor supports poll(2) (and analogously epoll(7)) and
select(2), as follows:

» The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if the counter has a value greater than 0.

» The file descriptor is writable (the select(2) writefds argument; the poll(2)
POLLOUT flag) if it is possible to write a value of at least "1" without
blocking.

» If an overflow of the counter value was detected, then select(2) indicates the
file descriptor as being both readable and writable, and poll(2) returns a
POLLERR event. As noted above, write(2) can never overflow the counter.
However an overflow can occur if 2764 eventfd "signal posts” were per-
formed by the KAIO subsystem (theoretically possible, but practically un-
likely). If an overflow has occurred, then read(2) will return that maximum
uint64_t value (i.e., OXFFFFFAFFFFfee).

The eventfd file descriptor also supports the other file-descriptor multiplexing
APIs: pselect(2) and ppoll(2).

close(2)
When the file descriptor is no longer required it should be closed. When all file
descriptors associated with the same eventfd object have been closed, the re-
sources for object are freed by the kernel.

A copy of the file descriptor created by eventfd() is inherited by the child produced by
fork(2). The duplicate file descriptor is associated with the same eventfd object. File
descriptors created by eventfd() are preserved across execve(2), unless the close-on-exec
flag has been set.

RETURN VALUE
On success, eventfd() returns a new eventfd file descriptor. On error, —1 is returned and
errno is set to indicate the error.

Linux man-pages 6.8 2024-05-02 166

eventfd(2) System Calls Manual eventfd(2)

ERRORS
EINVAL
An unsupported value was specified in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient memory to create a new eventfd file descriptor.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
eventfd() Thread safety | MT-Safe
VERSIONS

C library/kernel differences
There are two underlying Linux system calls: eventfd() and the more recent eventfd2().
The former system call does not implement a flags argument. The latter system call im-
plements the flags values described above. The glibc wrapper function will use
eventfd2() where it is available.

Additional glibc features
The GNU C library defines an additional type, and two functions that attempt to abstract
some of the details of reading and writing on an eventfd file descriptor:

typedef uint64_t eventfd _t;

int eventfd_read(int fd, eventfd_t *value);
int eventfd write(int fd, eventfd_t value);

The functions perform the read and write operations on an eventfd file descriptor, return-
ing 0 if the correct number of bytes was transferred, or —1 otherwise.

STANDARDS
Linux, GNU.

HISTORY
eventfd()
Linux 2.6.22, glibc 2.8.

eventfd2()
Linux 2.6.27 (see VERSIONS). Since glibc 2.9, the eventfd() wrapper will em-
ploy the eventfd2() system call, if it is supported by the kernel.

NOTES
Applications can use an eventfd file descriptor instead of a pipe (see pipe(2)) in all cases
where a pipe is used simply to signal events. The kernel overhead of an eventfd file de-
scriptor is much lower than that of a pipe, and only one file descriptor is required (versus
the two required for a pipe).

Linux man-pages 6.8 2024-05-02 167

eventfd(2) System Calls Manual eventfd(2)

When used in the kernel, an eventfd file descriptor can provide a bridge from kernel to
user space, allowing, for example, functionalities like KAIO (kernel AlO) to signal to a
file descriptor that some operation is complete.

A key point about an eventfd file descriptor is that it can be monitored just like any other
file descriptor using select(2), poll(2), or epoll(7). This means that an application can si-
multaneously monitor the readiness of "traditional™ files and the readiness of other ker-
nel mechanisms that support the eventfd interface. (Without the eventfd() interface,
these mechanisms could not be multiplexed via select(2), poll(2), or epoll(7).)

The current value of an eventfd counter can be viewed via the entry for the correspond-
ing file descriptor in the process’s /proc/ pid/fdinfo directory. See proc(5) for further de-
tails.

EXAMPLES
The following program creates an eventfd file descriptor and then forks to create a child
process. While the parent briefly sleeps, the child writes each of the integers supplied in
the program’s command-line arguments to the eventfd file descriptor. When the parent
has finished sleeping, it reads from the eventfd file descriptor.

The following shell session shows a sample run of the program:

$ Ja.out 12 47 14

Child writing 1 to efd

Child writing 2 to efd

Child writing 4 to efd

Child writing 7 to efd

Chilld writing 14 to efd

Child completed write loop
Parent about to read

Parent read 28 (0Oxl1c) from efd

Program source

#include <err._h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/eventfd.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int efd;

uinté4_t u;
ssize t S;

ifT (argc < 2) {

fprintf(stderr, "Usage: %s <num>...\n", argv[0]);
exit(EXIT_FAILURE);

Linux man-pages 6.8 2024-05-02 168

eventfd(2) System Calls Manual eventfd(2)

s
efd = eventfd(0, 0);
if (efd == -1)

err(EXIT_FAILURE, "eventfd");

switch (fork(Q)) {
case O:
for (size t j = 1; j < argc; j++) {
printf(""'Child writing %s to efd\n', argv[j]);
u = strtoull(argv[j], NULL, 0);
/* strtoull() allows various bases */
s = write(efd, &u, sizeof(uint64_t));
if (s 1= sizeof(uint64 _t))
err(EXIT_FAILURE, "write™);

+
printf("'Child completed write loop\n™);

ex1t(EXIT_SUCCESS);

default:
sleep(2);

printf("'Parent about to read\n');
s = read(efd, &u, sizeof(uint64 _t));
if (s 1= sizeof(uint64 _t))
err(EXIT_FAILURE, "read™);
printf("'Parent read %"PRIu64"™ (%#"'PRIx64") from efd\n", u, u)
exit(EXIT_SUCCESS);

case —-1:
err(EXIT_FAILURE, "fork'™);
+
+
SEE ALSO

futex(2), pipe(2), poll(2), read(2), select(2), signalfd(2), timerfd_create(2), write(2),
epoll(7), sem_overview(7)

Linux man-pages 6.8 2024-05-02 169

execve(2) System Calls Manual execve(2)

NAME
execve — execute program

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS

#include <unistd.h>

int execve(const char * pathname, char *const _Nullable argv([],
char *const _Nullable envp[]);

DESCRIPTION
execve() executes the program referred to by pathname. This causes the program that is
currently being run by the calling process to be replaced with a new program, with
newly initialized stack, heap, and (initialized and uninitialized) data segments.

pathname must be either a binary executable, or a script starting with a line of the form:
#linterpreter [optional-arg]
For details of the latter case, see "Interpreter scripts” below.

argv is an array of pointers to strings passed to the new program as its command-line ar-
guments. By convention, the first of these strings (i.e., argv[0]) should contain the file-
name associated with the file being executed. The argv array must be terminated by a
null pointer. (Thus, in the new program, argv[argc] will be a null pointer.)

envp is an array of pointers to strings, conventionally of the form key=value, which are
passed as the environment of the new program. The envp array must be terminated by a
null pointer.

This manual page describes the Linux system call in detail; for an overview of the
nomenclature and the many, often preferable, standardised variants of this function pro-
vided by libc, including ones that search the PATH environment variable, see exec(3).

The argument vector and environment can be accessed by the new program’s main func-
tion, when it is defined as:

int main(int argc, char *argv[], char *envp[])

Note, however, that the use of a third argument to the main function is not specified in
POSIX.1; according to POSIX.1, the environment should be accessed via the external
variable environ(7).

execve() does not return on success, and the text, initialized data, uninitialized data
(bss), and stack of the calling process are overwritten according to the contents of the
newly loaded program.

If the current program is being ptraced, a SIGTRAP signal is sent to it after a successful
execve().

If the set-user-ID bit is set on the program file referred to by pathname, then the effec-
tive user ID of the calling process is changed to that of the owner of the program file.
Similarly, if the set-group-ID bit is set on the program file, then the effective group ID of
the calling process is set to the group of the program file.

The aforementioned transformations of the effective IDs are not performed (i.e., the set-
user-I1D and set-group-ID bits are ignored) if any of the following is true:

Linux man-pages 6.8 2024-05-02 170

execve(2) System Calls Manual execve(2)

» the no_new_privs attribute is set for the calling thread (see prctl(2));

» the underlying filesystem is mounted nosuid (the MS_NOSUID flag for mount(2));
or

» the calling process is being ptraced.

The capabilities of the program file (see capabilities(7)) are also ignored if any of the
above are true.

The effective user ID of the process is copied to the saved set-user-1D; similarly, the ef-
fective group ID is copied to the saved set-group-1D. This copying takes place after any
effective ID changes that occur because of the set-user-1D and set-group-1D mode bits.

The process’s real UID and real GID, as well as its supplementary group IDs, are un-
changed by a call to execve().

If the executable is an a.out dynamically linked binary executable containing shared-li-
brary stubs, the Linux dynamic linker Id.so(8) is called at the start of execution to bring
needed shared objects into memory and link the executable with them.

If the executable is a dynamically linked ELF executable, the interpreter named in the
PT_INTERP segment is used to load the needed shared objects. This interpreter is typi-
cally /lib/ld—linux.so.2 for binaries linked with glibc (see Id-linux.so(8)).

Effect on process attributes
All process attributes are preserved during an execve(), except the following:

» The dispositions of any signals that are being caught are reset to the default (sig-
nal(7)).

* Any alternate signal stack is not preserved (sigaltstack(2)).

* Memory mappings are not preserved (mmap(2)).

» Attached System V shared memory segments are detached (shmat(2)).
» POSIX shared memory regions are unmapped (shm_open(3)).

* Open POSIX message queue descriptors are closed (mqg_overview(7)).
* Any open POSIX named semaphores are closed (sem_overview(7)).

» POSIX timers are not preserved (timer_create(2)).

* Any open directory streams are closed (opendir(3)).

» Memory locks are not preserved (mlock(2), mlockall(2)).

» Exit handlers are not preserved (atexit(3), on_exit(3)).

» The floating-point environment is reset to the default (see fenv(3)).

The process attributes in the preceding list are all specified in POSIX.1. The following
Linux-specific process attributes are also not preserved during an execve():

* The process’s "dumpable™ attribute is set to the value 1, unless a set-user-1D pro-
gram, a set-group-ID program, or a program with capabilities is being executed, in
which case the dumpable flag may instead be reset to the wvalue in
/proc/sys/fs/suid_dumpable, in the circumstances described under
PR_SET_DUMPABLE in prctl(2). Note that changes to the "dumpable™ attribute
may cause ownership of files in the process’s /proc/pid directory to change to

Linux man-pages 6.8 2024-05-02 171

execve(2) System Calls Manual execve(2)

root:root, as described in proc(5).
The prctl(2) PR_SET_KEEPCAPS flag is cleared.

(Since Linux 2.4.36 / 2.6.23) If a set-user-1D or set-group-1D program is being exe-
cuted, then the parent death signal set by prctl(2) PR_SET _PDEATHSIG flag is
cleared.

The process name, as set by prctl(2) PR_SET_NAME (and displayed by ps —o
comm), is reset to the name of the new executable file.

The SECBIT_KEEP_CAPS securebits flag is cleared. See capabilities(7).
The termination signal is reset to SIGCHLD (see clone(2)).

The file descriptor table is unshared, undoing the effect of the CLONE_FILES flag
of clone(2).

Note the following further points:

All threads other than the calling thread are destroyed during an execve(). Mutexes,
condition variables, and other pthreads objects are not preserved.

The equivalent of setlocale(LC_ALL, "C") is executed at program start-up.

POSIX.1 specifies that the dispositions of any signals that are ignored or set to the
default are left unchanged. POSIX.1 specifies one exception: if SIGCHLD is being
ignored, then an implementation may leave the disposition unchanged or reset it to
the default; Linux does the former.

Any outstanding asynchronous 1/O operations are canceled (aio_read(3),
aio_write(3)).

For the handling of capabilities during execve(), see capabilities(7).

By default, file descriptors remain open across an execve(). File descriptors that are
marked close-on-exec are closed; see the description of FD_CLOEXEC in fcntl(2).
(If a file descriptor is closed, this will cause the release of all record locks obtained
on the underlying file by this process. See fcntl(2) for details.) POSIX.1 says that if
file descriptors 0, 1, and 2 would otherwise be closed after a successful execve(), and
the process would gain privilege because the set-user-1D or set-group-ID mode bit
was set on the executed file, then the system may open an unspecified file for each of
these file descriptors. As a general principle, no portable program, whether privi-
leged or not, can assume that these three file descriptors will remain closed across an
execve().

Interpreter scripts
An interpreter script is a text file that has execute permission enabled and whose first
line is of the form:

#linterpreter [optional-arg]

The interpreter must be a valid pathname for an executable file.

If the pathname argument of execve() specifies an interpreter script, then interpreter
will be invoked with the following arguments:

interpreter [optional-arg] pathname arg...

where pathname is the pathname of the file specified as the first argument of execve(),

Linux man-pages 6.8 2024-05-02 172

execve(2) System Calls Manual execve(2)

and arg... is the series of words pointed to by the argv argument of execve(), starting at
argv[1]. Note that there is no way to get the argv[0] that was passed to the execve()
call.

For portable use, optional-arg should either be absent, or be specified as a single word
(i.e., it should not contain white space); see NOTES below.

Since Linux 2.6.28, the kernel permits the interpreter of a script to itself be a script.
This permission is recursive, up to a limit of four recursions, so that the interpreter may
be a script which is interpreted by a script, and so on.

Limits on size of arguments and environment
Most UNIX implementations impose some limit on the total size of the command-line
argument (argv) and environment (envp) strings that may be passed to a new program.
POSIX.1 allows an implementation to advertise this limit using the ARG_MAX con-
stant (either defined in <limits.h> or available at run time using the -call
sysconf(_SC_ARG_MAX)).

Before Linux 2.6.23, the memory used to store the environment and argument strings
was limited to 32 pages (defined by the kernel constant MAX_ARG_PAGES). On ar-
chitectures with a 4-kB page size, this yields a maximum size of 128 kB.

On Linux 2.6.23 and later, most architectures support a size limit derived from the soft
RLIMIT_STACK resource limit (see getrlimit(2)) that is in force at the time of the ex-
ecve() call. (Architectures with no memory management unit are excepted: they main-
tain the limit that was in effect before Linux 2.6.23.) This change allows programs to
have a much larger argument and/or environment list. For these architectures, the total
size is limited to 1/4 of the allowed stack size. (Imposing the 1/4-limit ensures that the
new program always has some stack space.) Additionally, the total size is limited to 3/4
of the value of the kernel constant _STK_LIM (8 MiB). Since Linux 2.6.25, the kernel
also places a floor of 32 pages on this size limit, so that, even when RLIMIT_STACK
is set very low, applications are guaranteed to have at least as much argument and envi-
ronment space as was provided by Linux 2.6.22 and earlier. (This guarantee was not
provided in Linux 2.6.23 and 2.6.24.) Additionally, the limit per string is 32 pages (the
kernel constant MAX_ARG_STRLEN), and the maximum number of strings is
OX7FFFFFFF.

RETURN VALUE

On success, execve() does not return, on error =1 is returned, and errno is set to indicate
the error.

ERRORS
E2BIG
The total number of bytes in the environment (envp) and argument list (argv) is
too large, an argument or environment string is too long, or the full pathname of
the executable is too long. The terminating null byte is counted as part of the
string length.

EACCES
Search permission is denied on a component of the path prefix of pathname or
the name of a script interpreter. (See also path_resolution(7).)

Linux man-pages 6.8 2024-05-02 173

execve(2) System Calls Manual execve(2)

EACCES
The file or a script interpreter is not a regular file.

EACCES
Execute permission is denied for the file or a script or ELF interpreter.

EACCES
The filesystem is mounted noexec.

EAGAIN (since Linux 3.1)
Having changed its real UID using one of the set*uid() calls, the caller was—
and is now still—above its RLIMIT_NPROC resource limit (see setrlimit(2)).
For a more detailed explanation of this error, see NOTES.

EFAULT
pathname or one of the pointers in the vectors argv or envp points outside your
accessible address space.

EINVAL
An ELF executable had more than one PT_INTERP segment (i.e., tried to name
more than one interpreter).

EIO An /O error occurred.

EISDIR
An ELF interpreter was a directory.

ELIBBAD
An ELF interpreter was not in a recognized format.

ELOOP
Too many symbolic links were encountered in resolving pathname or the name
of a script or ELF interpreter.

ELOOP
The maximum recursion limit was reached during recursive script interpretation
(see "Interpreter scripts”, above). Before Linux 3.8, the error produced for this
case was ENOEXEC.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
pathname is too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The file pathname or a script or ELF interpreter does not exist.

ENOEXEC
An executable is not in a recognized format, is for the wrong architecture, or has
some other format error that means it cannot be executed.

ENOMEM
Insufficient kernel memory was available.

Linux man-pages 6.8 2024-05-02 174

execve(2) System Calls Manual execve(2)

ENOTDIR
A component of the path prefix of pathname or a script or ELF interpreter is not
a directory.

EPERM
The filesystem is mounted nosuid, the user is not the superuser, and the file has
the set-user-1D or set-group-1D bit set.

EPERM
The process is being traced, the user is not the superuser and the file has the set-
user-1D or set-group-1D bit set.

EPERM
A "capability-dumb™ applications would not obtain the full set of permitted capa-
bilities granted by the executable file. See capabilities(7).

ETXTBSY
The specified executable was open for writing by one or more processes.

VERSIONS

POSIX does not document the #! behavior, but it exists (with some variations) on other
UNIX systems.

On Linux, argv and envp can be specified as NULL. In both cases, this has the same ef-
fect as specifying the argument as a pointer to a list containing a single null pointer. Do
not take advantage of this nonstandard and nonportable misfeature! On many
other UNIX systems, specifying argv as NULL will result in an error (EFAULT). Some
other UNIX systems treat the envp==NULL case the same as Linux.

POSIX.1 says that values returned by sysconf(3) should be invariant over the lifetime of
a process. However, since Linux 2.6.23, if the RLIMIT_STACK resource limit
changes, then the value reported by SC_ARG_MAX will also change, to reflect the
fact that the limit on space for holding command-line arguments and environment vari-
ables has changed.

Interpreter scripts
The kernel imposes a maximum length on the text that follows the "#!" characters at the
start of a script; characters beyond the limit are ignored. Before Linux 5.1, the limit is
127 characters. Since Linux 5.1, the limit is 255 characters.

The semantics of the optional-arg argument of an interpreter script vary across imple-
mentations. On Linux, the entire string following the interpreter name is passed as a
single argument to the interpreter, and this string can include white space. However, be-
havior differs on some other systems. Some systems use the first white space to termi-
nate optional-arg. On some systems, an interpreter script can have multiple arguments,
and white spaces in optional-arg are used to delimit the arguments.

Linux (like most other modern UNIX systems) ignores the set-user-ID and set-group-1D
bits on scripts.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Linux man-pages 6.8 2024-05-02 175

execve(2) System Calls Manual execve(2)

With UNIX V6, the argument list of an exec() call was ended by 0, while the argument
list of main was ended by —1. Thus, this argument list was not directly usable in a fur-
ther exec() call. Since UNIX V7, both are NULL.

NOTES
One sometimes sees execve() (and the related functions described in exec(3)) described
as "executing a new process™ (or similar). This is a highly misleading description: there
IS N0 new process; many attributes of the calling process remain unchanged (in particu-
lar, its PID). All that execve() does is arrange for an existing process (the calling
process) to execute a new program.

Set-user-1D and set-group-1D processes can not be ptrace(2)d.

The result of mounting a filesystem nosuid varies across Linux kernel versions: some
will refuse execution of set-user-1D and set-group-1D executables when this would give
the user powers they did not have already (and return EPERM), some will just ignore
the set-user-1D and set-group-ID bits and exec() successfully.

In most cases where execve() fails, control returns to the original executable image, and
the caller of execve() can then handle the error. However, in (rare) cases (typically
caused by resource exhaustion), failure may occur past the point of no return: the origi-
nal executable image has been torn down, but the new image could not be completely
built. In such cases, the kernel kills the process with a SIGSEGV (SIGKILL until
Linux 3.17) signal.

execve() and EAGAIN
A more detailed explanation of the EAGAIN error that can occur (since Linux 3.1)
when calling execve() is as follows.

The EAGAIN error can occur when a preceding call to setuid(2), setreuid(2), or
setresuid(2) caused the real user ID of the process to change, and that change caused the
process to exceed its RLIMIT_NPROC resource limit (i.e., the number of processes
belonging to the new real UID exceeds the resource limit). From Linux 2.6.0 to Linux
3.0, this caused the set*uid() call to fail. (Before Linux 2.6, the resource limit was not
imposed on processes that changed their user IDs.)

Since Linux 3.1, the scenario just described no longer causes the set*uid() call to fail,
because it too often led to security holes where buggy applications didn’t check the re-
turn status and assumed that—if the caller had root privileges—the call would always
succeed. Instead, the set*uid() calls now successfully change the real UID, but the ker-
nel sets an internal flag, named PF_NPROC_EXCEEDED, to note that the
RLIMIT_NPROC resource limit has been exceeded. If the PF_NPROC _EX-
CEEDED flag is set and the resource limit is still exceeded at the time of a subsequent
execve() call, that call fails with the error EAGAIN. This kernel logic ensures that the
RLIMIT_NPROC resource limit is still enforced for the common privileged daemon
workflow—namely, fork(2) + set*uid() + execve().

If the resource limit was not still exceeded at the time of the execve() call (because other
processes belonging to this real UID terminated between the set*uid() call and the ex-
ecve() call), then the execve() call succeeds and the kernel clears the PF_NPROC_EX-
CEEDED process flag. The flag is also cleared if a subsequent call to fork(2) by this
process succeeds.

Linux man-pages 6.8 2024-05-02 176

execve(2) System Calls Manual execve(2)

EXAMPLES

The following program is designed to be execed by the second program below. It just
echoes its command-line arguments, one per line.

/* myecho.c */

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
for (size_t j = 0; j < argc; j++)
printf(argv[%zu]: %s\n", j, argv[il);
exit(EXIT_SUCCESS);
ks

This program can be used to exec the program named in its command-line argument:
/* execve.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int

main(int argc, char *argv[])

{
static char *newargv[] = { NULL, "hello™, "world"™, NULL };
static char *newenviron[] = { NULL };

ifT (argc 1= 2) {
fprintf(stderr, "Usage: %s <file-to-exec>\n", argv[0]);
exit(EXIT_FAILURE);

}

newargv[0] = argv[1];

execve(argv[l], newargv, newenviron);
perror(“'execve™); /* execve() returns only on error */
exit(EXIT_FAILURE);

}

We can use the second program to exec the first as follows:

$ cc myecho.c -0 myecho
$ cc execve.c -0 execve
$./execve ./myecho
argv[0]: ./myecho
argv[1l]: hello

Linux man-pages 6.8 2024-05-02 177

execve(2) System Calls Manual execve(2)

argv[2]: world

We can also use these programs to demonstrate the use of a script interpreter. To do this
we create a script whose "interpreter" is our myecho program:

$ cat > script
#1_/myecho script-arg
~D
$ chmod +x script
We can then use our program to exec the script:

$./execve ./script
argv[0]: ./myecho

argv[1l]: script-arg
argv[2]: ./script

argv[3]: hello

argv[4]: world

SEE ALSO
chmod(2), execveat(2), fork(2), get robust list(2), ptrace(2), exec(3), fexecve(3),

getauxval(3), getopt(3), system(3), capabilities(7), credentials(7), environ(7),
path_resolution(7), 1d.so(8)

Linux man-pages 6.8 2024-05-02 178

execveat(2) System Calls Manual execveat(2)

NAME

execveat — execute program relative to a directory file descriptor

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <linux/fcntl.n> /* Definition of AT _* constants */
#include <unistd.h>

int execveat(int dirfd, const char * pathname,
char *const _Nullable argv(],
char *const _Nullable envp([],
int flags);

DESCRIPTION

The execveat() system call executes the program referred to by the combination of dirfd
and pathname. It operates in exactly the same way as execve(2), except for the differ-
ences described in this manual page.

If the pathname given in pathname is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current working di-
rectory of the calling process, as is done by execve(2) for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
execve(2)).

If pathname is absolute, then dirfd is ignored.

If pathname is an empty string and the AT_EMPTY_PATH flag is specified, then the
file descriptor dirfd specifies the file to be executed (i.e., dirfd refers to an executable
file, rather than a directory).

The flags argument is a bit mask that can include zero or more of the following flags:

AT_EMPTY_PATH
If pathname is an empty string, operate on the file referred to by dirfd (which
may have been obtained using the open(2) O_PATH flag).

AT _SYMLINK_NOFOLLOW
If the file identified by dirfd and a non-NULL pathname is a symbolic link, then
the call fails with the error ELOOP.

RETURN VALUE

On success, execveat() does not return. On error, —1 is returned, and errno is set to in-
dicate the error.

ERRORS

The same errors that occur for execve(2) can also occur for execveat(). The following
additional errors can occur for execveat():

pathname
is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

Linux man-pages 6.8 2024-05-02 179

execveat(2) System Calls Manual execveat(2)

EINVAL
Invalid flag specified in flags.

ELOOP
flags includes AT_SYMLINK_NOFOLLOW and the file identified by dirfd
and a non-NULL pathname is a symbolic link.

ENOENT
The program identified by dirfd and pathname requires the use of an interpreter
program (such as a script starting with "#!1"), but the file descriptor dirfd was
opened with the O_CLOEXEC flag, with the result that the program file is inac-
cessible to the launched interpreter. See BUGS.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.

STANDARDS

Linux.

HISTORY
Linux 3.19, glibc 2.34.

NOTES
In addition to the reasons explained in openat(2), the execveat() system call is also
needed to allow fexecve(3) to be implemented on systems that do not have the /proc
filesystem mounted.

When asked to execute a script file, the argv[0] that is passed to the script interpreter is
a string of the form /dev/fd/N or /dev/fd/N/P, where N is the number of the file descrip-
tor passed via the dirfd argument. A string of the first form occurs when
AT _EMPTY_PATH is employed. A string of the second form occurs when the script
is specified via both dirfd and pathname; in this case, P is the value given in pathname.

For the same reasons described in fexecve(3), the natural idiom when using execveat() is
to set the close-on-exec flag on dirfd. (But see BUGS.)

BUGS
The ENOENT error described above means that it is not possible to set the close-on-
exec flag on the file descriptor given to a call of the form:

execveat(fd, "', argv, envp, AT_EMPTY_PATH);

However, the inability to set the close-on-exec flag means that a file descriptor referring
to the script leaks through to the script itself. As well as wasting a file descriptor, this
leakage can lead to file-descriptor exhaustion in scenarios where scripts recursively em-
ploy execveat().

SEE ALSO
execve(2), openat(2), fexecve(3)

Linux man-pages 6.8 2024-05-02 180

_exit(2) System Calls Manual _exit(2)

NAME

_exit, _Exit — terminate the calling process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
[[noreturn]] void _exit(int status);
#include <stdlib.h>
[[noreturn]] void _EXxit(int status);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

_Exit():
_ISOC99_SOURCE || _POSIX_C_SOURCE >=200112L

DESCRIPTION
_exit() terminates the calling process "immediately”. Any open file descriptors belong-
ing to the process are closed. Any children of the process are inherited by init(1) (or by
the nearest "subreaper" process as defined through the use of the prctl(2)
PR_SET _CHILD_SUBREAPER operation). The process’s parent is sent a
SIGCHLD signal.

The value status & OxFF is returned to the parent process as the process’s exit status,
and can be collected by the parent using one of the wait(2) family of calls.

The function _Exit() is equivalent to _exit().

RETURN VALUE
These functions do not return.

STANDARDS
_exit()
POSIX.1-2008.

_Exit()
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

_Exit() was introduced by C99.

NOTES
For a discussion on the effects of an exit, the transmission of exit status, zombie
processes, signals sent, and so on, see exit(3).

The function _exit() is like exit(3), but does not call any functions registered with
atexit(3) or on_exit(3). Open stdio(3) streams are not flushed. On the other hand,
_exit() does close open file descriptors, and this may cause an unknown delay, waiting
for pending output to finish. If the delay is undesired, it may be useful to call functions
like tcflush(3) before calling _exit(). Whether any pending 1/O is canceled, and which
pending 1/0 may be canceled upon _exit(), is implementation-dependent.

Linux man-pages 6.8 2024-05-02 181

_exit(2) System Calls Manual _exit(2)

C library/kernel differences
The text above in DESCRIPTION describes the traditional effect of _exit(), which is to
terminate a process, and these are the semantics specified by POSIX.1 and implemented
by the C library wrapper function. On modern systems, this means termination of all
threads in the process.

By contrast with the C library wrapper function, the raw Linux _exit() system call termi-
nates only the calling thread, and actions such as reparenting child processes or sending
SIGCHLD to the parent process are performed only if this is the last thread in the
thread group.

Up to glibc 2.3, the _exit() wrapper function invoked the kernel system call of the same
name. Since glibc 2.3, the wrapper function invokes exit_group(2), in order to terminate
all of the threads in a process.

SEE ALSO
execve(2), exit_group(2), fork(2), kill(2), wait(2), wait4(2), waitpid(2), atexit(3), exit(3),
on_exit(3), termios(3)

Linux man-pages 6.8 2024-05-02 182

exit_group(2) System Calls Manual exit_group(2)

NAME

exit_group — exit all threads in a process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[noreturn]] void syscall(SYS_exit_group, int status);

Note: glibc provides no wrapper for exit_group(), necessitating the use of syscall(2).

DESCRIPTION
This system call terminates all threads in the calling process’s thread group.

RETURN VALUE
This system call does not return.

STANDARDS
Linux.

HISTORY
Linux 2.5.35.

NOTES

Since glibc 2.3, this is the system call invoked when the _exit(2) wrapper function is

called.

SEE ALSO
_exit(2)

Linux man-pages 6.8 2024-05-02

183

fallocate(2) System Calls Manual fallocate(2)

NAME
fallocate — manipulate file space
LIBRARY
Standard C library (libc, —Ic)
SYNOPSIS
#define _ GNU_SOURCE I* See feature_test_macros(7) */

#include <fcntl.h>

int fallocate(int fd, int mode, off t offset, off _t len);

DESCRIPTION
This is a nonportable, Linux-specific system call. For the portable, POSIX.1-specified
method of ensuring that space is allocated for a file, see posix_fallocate(3).

fallocate() allows the caller to directly manipulate the allocated disk space for the file
referred to by fd for the byte range starting at offset and continuing for len bytes.

The mode argument determines the operation to be performed on the given range. De-
tails of the supported operations are given in the subsections below.

Allocating disk space
The default operation (i.e., mode is zero) of fallocate() allocates the disk space within
the range specified by offset and len. The file size (as reported by stat(2)) will be
changed if offset+len is greater than the file size. Any subregion within the range speci-
fied by offset and len that did not contain data before the call will be initialized to zero.
This default behavior closely resembles the behavior of the posix_fallocate(3) library
function, and is intended as a method of optimally implementing that function.

After a successful call, subsequent writes into the range specified by offset and len are
guaranteed not to fail because of lack of disk space.

If the FALLOC _FL_KEEP_SIZE flag is specified in mode, the behavior of the call is
similar, but the file size will not be changed even if offset+len is greater than the file
size. Preallocating zeroed blocks beyond the end of the file in this manner is useful for
optimizing append workloads.

If the FALLOC_FL_UNSHARE_RANGE flag is specified in mode, shared file data
extents will be made private to the file to guarantee that a subsequent write will not fail
due to lack of space. Typically, this will be done by performing a copy-on-write opera-
tion on all shared data in the file. This flag may not be supported by all filesystems.

Because allocation is done in block size chunks, fallocate() may allocate a larger range
of disk space than was specified.

Deallocating file space
Specifying the FALLOC _FL_PUNCH_HOLE flag (available since Linux 2.6.38) in
mode deallocates space (i.e., creates a hole) in the byte range starting at offset and con-
tinuing for len bytes. Within the specified range, partial filesystem blocks are zeroed,
and whole filesystem blocks are removed from the file. After a successful call, subse-
quent reads from this range will return zeros.

The FALLOC FL_PUNCH HOLE flag must be ORed with FAL-
LOC_FL_KEEP_SIZE in mode; in other words, even when punching off the end of
the file, the file size (as reported by stat(2)) does not change.

Linux man-pages 6.8 2024-05-02 184

fallocate(2) System Calls Manual fallocate(2)

Not all filesystems support FALLOC_FL_PUNCH_HOLE; if a filesystem doesn’t
support the operation, an error is returned. The operation is supported on at least the
following filesystems:

* XFS (since Linux 2.6.38)
» ext4 (since Linux 3.0)
» Btrfs (since Linux 3.7)
o tmpfs(5) (since Linux 3.5)
» gfs2(5) (since Linux 4.16)

Collapsing file space
Specifying the FALLOC_FL_COLLAPSE_RANGE flag (available since Linux 3.15)
in mode removes a byte range from a file, without leaving a hole. The byte range to be
collapsed starts at offset and continues for len bytes. At the completion of the operation,
the contents of the file starting at the location offset+len will be appended at the location
offset, and the file will be len bytes smaller.

A filesystem may place limitations on the granularity of the operation, in order to ensure
efficient implementation. Typically, offset and len must be a multiple of the filesystem
logical block size, which varies according to the filesystem type and configuration. If a
filesystem has such a requirement, fallocate() fails with the error EINVAL if this re-
quirement is violated.

If the region specified by offset plus len reaches or passes the end of file, an error is re-
turned; instead, use ftruncate(2) to truncate a file.

No other flags may be specified in mode in conjunction with FALLOC FL_COL-
LAPSE_RANGE.

As at Linux 3.15, FALLOC_FL_COLLAPSE_RANGE is supported by ext4 (only for
extent-based files) and XFS.

Zeroing file space
Specifying the FALLOC_FL_ZERO_RANGE flag (available since Linux 3.15) in
mode zeros space in the byte range starting at offset and continuing for len bytes.
Within the specified range, blocks are preallocated for the regions that span the holes in
the file. After a successful call, subsequent reads from this range will return zeros.

Zeroing is done within the filesystem preferably by converting the range into unwritten
extents. This approach means that the specified range will not be physically zeroed out
on the device (except for partial blocks at the either end of the range), and 1/O is (other-
wise) required only to update metadata.

If the FALLOC_FL_KEEP_SIZE flag is additionally specified in mode, the behavior
of the call is similar, but the file size will not be changed even if offset+len is greater
than the file size. This behavior is the same as when preallocating space with FAL-
LOC_FL_KEEP_SIZE specified.

Not all filesystems support FALLOC_FL_ZERO_ RANGE; if a filesystem doesn’t sup-
port the operation, an error is returned. The operation is supported on at least the fol-
lowing filesystems:

Linux man-pages 6.8 2024-05-02 185

fallocate(2) System Calls Manual fallocate(2)

* XFS (since Linux 3.15)

e ext4, for extent-based files (since Linux 3.15)
e SMB3 (since Linux 3.17)

» Birfs (since Linux 4.16)

Increasing file space
Specifying the FALLOC_FL_INSERT_RANGE flag (available since Linux 4.1) in
mode increases the file space by inserting a hole within the file size without overwriting
any existing data. The hole will start at offset and continue for len bytes. When insert-
ing the hole inside file, the contents of the file starting at offset will be shifted upward
(i.e., to a higher file offset) by len bytes. Inserting a hole inside a file increases the file
size by len bytes.

This mode has the same limitations as FALLOC_FL_COLLAPSE_RANGE regarding
the granularity of the operation. If the granularity requirements are not met, fallocate()
fails with the error EINVAL. If the offset is equal to or greater than the end of file, an
error is returned. For such operations (i.e., inserting a hole at the end of file),
ftruncate(2) should be used.

No other flags may be specified in mode in conjunction with FALLOC_FL_IN-
SERT_RANGE.

FALLOC_FL_INSERT_RANGE requires filesystem support. Filesystems that sup-
port this operation include XFS (since Linux 4.1) and ext4 (since Linux 4.2).

RETURN VALUE
On success, fallocate() returns zero. On error, —1 is returned and errno is set to indicate

the error.
ERRORS
EBADF
fd is not a valid file descriptor, or is not opened for writing.
EFBIG
offset+len exceeds the maximum file size.
EFBIG

mode is FALLOC_FL_INSERT_RANGE, and the current file size+len ex-
ceeds the maximum file size.

EINTR
A signal was caught during execution; see signal(7).

EINVAL
offset was less than 0, or len was less than or equal to 0.

EINVAL
mode is FALLOC FL_COLLAPSE_RANGE and the range specified by offset
plus len reaches or passes the end of the file.

EINVAL
mode is FALLOC_FL_INSERT_RANGE and the range specified by offset
reaches or passes the end of the file.

Linux man-pages 6.8 2024-05-02 186

fallocate(2) System Calls Manual fallocate(2)

EINVAL
mode is FALLOC_FL_COLLAPSE RANGE or FALLOC_FL_IN-
SERT_RANGE, but either offset or len is not a multiple of the filesystem block
size.

EINVAL
mode contains one of FALLOC FL_COLLAPSE_RANGE or FAL-
LOC_FL_INSERT_RANGE and also other flags; no other flags are permitted
with FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-

SERT_RANGE.
EINVAL
mode IS FALLOC_FL_COLLAPSE_RANGE, FAL-

LOC_FL_ZERO_RANGE, or FALLOC_FL_INSERT_RANGE, but the file
referred to by fd is not a regular file.

EIO An 1/O error occurred while reading from or writing to a filesystem.

ENODEV
fd does not refer to a regular file or a directory. (If fd is a pipe or FIFO, a dif-
ferent error results.)

ENOSPC
There is not enough space left on the device containing the file referred to by fd.

ENOSYS
This kernel does not implement fallocate().

EOPNOTSUPP
The filesystem containing the file referred to by fd does not support this opera-
tion; or the mode is not supported by the filesystem containing the file referred to
by fd.

EPERM
The file referred to by fd is marked immutable (see chattr(1)).

EPERM
mode specifies FALLOC_FL_PUNCH_HOLE, FALLOC_FL_COL-
LAPSE_RANGE, or FALLOC_FL_INSERT_RANGE and the file referred to
by fd is marked append-only (see chattr(1)).

EPERM
The operation was prevented by a file seal; see fcntl(2).

ESPIPE
fd refers to a pipe or FIFO.

ETXTBSY
mode specifiess FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE, but the file referred to by fd is currently being executed.

STANDARDS
Linux.

HISTORY

Linux man-pages 6.8 2024-05-02 187

fallocate(2) System Calls Manual fallocate(2)

fallocate()
Linux 2.6.23, glibc 2.10.

FALLOC FL_*
glibc 2.18.

SEE ALSO
fallocate(1), ftruncate(2), posix_fadvise(3), posix_fallocate(3)

Linux man-pages 6.8 2024-05-02 188

fanotify_init(2) System Calls Manual fanotify_init(2)

NAME

fanotify_init — create and initialize fanotify group
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <fcntl.h> [* Definition of O_* constants */

#include <sys/fanotify.h>
int fanotify_init(unsigned int flags, unsigned int event_f flags);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_init() initializes a new fanotify group and returns a file descriptor for the event
queue associated with the group.

The file descriptor is used in calls to fanotify _mark(2) to specify the files, directories,
mounts, or filesystems for which fanotify events shall be created. These events are re-
ceived by reading from the file descriptor. Some events are only informative, indicating
that a file has been accessed. Other events can be used to determine whether another ap-
plication is permitted to access a file or directory. Permission to access filesystem ob-
jects is granted by writing to the file descriptor.

Multiple programs may be using the fanotify interface at the same time to monitor the
same files.

The number of fanotify groups per user is limited. See fanotify(7) for details about this
limit.

The flags argument contains a multi-bit field defining the notification class of the listen-
ing application and further single bit fields specifying the behavior of the file descriptor.

If multiple listeners for permission events exist, the notification class is used to establish
the sequence in which the listeners receive the events.

Only one of the following notification classes may be specified in flags:

FAN_CLASS PRE_CONTENT
This value allows the receipt of events notifying that a file has been accessed and
events for permission decisions if a file may be accessed. It is intended for event
listeners that need to access files before they contain their final data. This notifi-
cation class might be used by hierarchical storage managers, for example. Use
of this flag requires the CAP_SYS_ADMIN capability.

FAN_CLASS_CONTENT
This value allows the receipt of events notifying that a file has been accessed and
events for permission decisions if a file may be accessed. It is intended for event
listeners that need to access files when they already contain their final content.
This notification class might be used by malware detection programs, for exam-
ple. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_CLASS_NOTIF
This is the default value. It does not need to be specified. This value only allows
the receipt of events notifying that a file has been accessed. Permission deci-
sions before the file is accessed are not possible.

Linux man-pages 6.8 2024-05-02 189

fanotify_init(2) System Calls Manual fanotify_init(2)

Listeners with different notification classes will receive events in the order
FAN_CLASS PRE_CONTENT, FAN_CLASS CONTENT, FAN_CLASS NOTIF.
The order of notification for listeners in the same notification class is undefined.

The following bits can additionally be set in flags:

FAN_CLOEXEC
Set the close-on-exec flag (FD_CLOEXEC) on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2).

FAN_NONBLOCK
Enable the nonblocking flag (O_NONBLOCK) for the file descriptor. Reading
from the file descriptor will not block. Instead, if no data is available, read(2)
fails with the error EAGAIN.

FAN_UNLIMITED_QUEUE
Remove the limit on the number of events in the event queue. See fanotify(7) for
details about this limit. Use of this flag requires the CAP_SYS_ADMIN capa-
bility.

FAN_UNLIMITED_MARKS
Remove the limit on the number of fanotify marks per user. See fanotify(7) for
details about this limit. Use of this flag requires the CAP_SYS_ADMIN capa-
bility.

FAN_REPORT _TID (since Linux 4.20)
Report thread ID (TID) instead of process ID (PID) in the pid field of the struct
fanotify_event_metadata supplied to read(2) (see fanotify(7)). Use of this flag
requires the CAP_SYS_ADMIN capability.

FAN_ENABLE_AUDIT (since Linux 4.15)
Enable generation of audit log records about access mediation performed by per-
mission events. The permission event response has to be marked with the
FAN_AUDIT flag for an audit log record to be generated. Use of this flag re-
quires the CAP_AUDIT_WRITE capability.

FAN_REPORT _FID (since Linux 5.1)
This value allows the receipt of events which contain additional information
about the underlying filesystem object correlated to an event. An additional
record of type FAN_EVENT _INFO_TYPE_FID encapsulates the information
about the object and is included alongside the generic event metadata structure.
The file descriptor that is used to represent the object correlated to an event is in-
stead substituted with a file handle. It is intended for applications that may find
the use of a file handle to identify an object more suitable than a file descriptor.
Additionally, it may be used for applications monitoring a directory or a filesys-
tem that are interested in the directory entry modification events FAN_CRE-
ATE, FAN_DELETE, FAN_MOVE, and FAN_RENAME, or in events such as
FAN_ATTRIB, FAN_DELETE_SELF, and FAN_MOVE_SELF. All the
events above require an fanotify group that identifies filesystem objects by file
handles. Note that without the flag FAN_REPORT_TARGET _FID, for the di-
rectory entry modification events, there is an information record that identifies
the modified directory and not the created/deleted/moved child object. The use
of FAN_CLASS CONTENT or FAN_CLASS PRE_CONTENT is not

Linux man-pages 6.8 2024-05-02 190

fanotify_init(2) System Calls Manual fanotify_init(2)

permitted with this flag and will result in the error EINVAL. See fanotify(7) for
additional details.

FAN_REPORT_DIR_FID (since Linux 5.9)

Events for fanotify groups initialized with this flag will contain (see exceptions
below) additional information about a directory object correlated to an event. An
additional record of type FAN_EVENT _INFO_TYPE_DFID encapsulates the
information about the directory object and is included alongside the generic
event metadata structure. For events that occur on a non-directory object, the ad-
ditional structure includes a file handle that identifies the parent directory filesys-
tem object. Note that there is no guarantee that the directory filesystem object
will be found at the location described by the file handle information at the time
the event is received. When combined with the flag FAN_REPORT _FID, two
records may be reported with events that occur on a non-directory object, one to
identify the non-directory object itself and one to identify the parent directory
object. Note that in some cases, a filesystem object does not have a parent, for
example, when an event occurs on an unlinked but open file. In that case, with
the FAN_REPORT _FID flag, the event will be reported with only one record to
identify the non-directory object itself, because there is no directory associated
with the event. Without the FAN_REPORT_FID flag, no event will be re-
ported. See fanotify(7) for additional details.

FAN_REPORT_NAME (since Linux 5.9)
Events for fanotify groups initialized with this flag will contain additional infor-
mation about the name of the directory entry correlated to an event. This flag
must be provided in conjunction with the flag FAN_REPORT_DIR_FID. Pro-
viding this flag value without FAN_REPORT_DIR_FID will result in the error
EINVAL. This flag may be combined with the flag FAN_REPORT_FID. An
additional record of type FAN_EVENT _INFO_TYPE_DFID_NAME, which
encapsulates the information about the directory entry, is included alongside the
generic event metadata structure and substitutes the additional information
record of type FAN_EVENT _INFO_TYPE_DFID. The additional record in-
cludes a file handle that identifies a directory filesystem object followed by a
name that identifies an entry in that directory. For the directory entry modifica-
tion events FAN_CREATE, FAN_DELETE, and FAN_MOVE, the reported
name is that of the created/deleted/moved directory entry. The event FAN_RE-
NAME may contain two information records. One of type
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME identifying the old direc-
tory entry, and another of type
FAN_EVENT_INFO_TYPE_NEW_DFID_NAME identifying the new direc-
tory entry. For other events that occur on a directory object, the reported file
handle is that of the directory object itself and the reported name is °.’. For other
events that occur on a non-directory object, the reported file handle is that of the
parent directory object and the reported name is the name of a directory entry
where the object was located at the time of the event. The rationale behind this
logic is that the reported directory file handle can be passed to
open_by handle_at(2) to get an open directory file descriptor and that file de-
scriptor along with the reported name can be used to call fstatat(2). The same
rule that applies to record type FAN_EVENT _INFO_TYPE_DFID also applies
to record type FAN_EVENT _INFO_TYPE_DFID_NAME: if a non-directory

Linux man-pages 6.8 2024-05-02 191

fanotify_init(2) System Calls Manual fanotify_init(2)

object has no parent, either the event will not be reported or it will be reported
without the directory entry information. Note that there is no guarantee that the
filesystem object will be found at the location described by the directory entry
information at the time the event is received. See fanotify(7) for additional de-
tails.

FAN_REPORT _DFID_NAME
This is a synonym for (FAN_REPORT _DIR_FID|FAN_REPORT NAME).

FAN_REPORT_TARGET_FID (since Linux 5.17)

Events for fanotify groups initialized with this flag will contain additional infor-
mation about the child correlated with directory entry modification events. This
flag must be provided in conjunction with the flags FAN_REPORT _FID,
FAN_REPORT_DIR_FID and FAN_REPORT_NAME. or else the error
EINVAL will be returned. For the directory entry modification events
FAN_CREATE, FAN_DELETE, FAN_MOVE, and FAN_RENAME, an addi-
tional record of type FAN_EVENT _INFO_TYPE_FID, is reported in addition
to the information records of type FAN_EVENT_INFO_TYPE_DFID,
FAN_EVENT _INFO_TYPE_DFID_NAME,
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME, and
FAN_EVENT_INFO_TYPE_NEW _DFID_NAME. The additional record in-
cludes a file handle that identifies the filesystem child object that the directory
entry is referring to.

FAN_REPORT_DFID_NAME_TARGET
This is a synonym for (FAN_REPORT_DFID_NAME|FAN_RE-
PORT_FID|FAN_REPORT_TARGET_FID).

FAN_REPORT_PIDFD (since Linux 5.15)

Events for fanotify groups initialized with this flag will contain an additional in-
formation record alongside the generic fanotify_event_metadata structure. This
information record will be of type FAN_EVENT_INFO_TYPE_PIDFD and
will contain a pidfd for the process that was responsible for generating an event.
A pidfd returned in this information record object is no different to the pidfd that
is returned when calling pidfd_open(2). Usage of this information record are for
applications that may be interested in reliably determining whether the process
responsible for generating an event has been recycled or terminated. The use of
the FAN_REPORT _TID flag along with FAN_REPORT _PIDFD is currently
not supported and attempting to do so will result in the error EINVAL being re-
turned. This limitation is currently imposed by the pidfd API as it currently only
supports the creation of pidfds for thread-group leaders. Creating pidfds for non-
thread-group leaders may be supported at some point in the future, so this re-
striction may eventually be lifted. For more details on information records, see
fanotify(7).

The event_f flags argument defines the file status flags that will be set on the open file
descriptions that are created for fanotify events. For details of these flags, see the de-
scription of the flags values in open(2). event f flags includes a multi-bit field for the
access mode. This field can take the following values:

Linux man-pages 6.8 2024-05-02 192

fanotify_init(2) System Calls Manual fanotify_init(2)

O_RDONLY
This value allows only read access.

O_WRONLY
This value allows only write access.

O_RDWR
This value allows read and write access.

Additional bits can be set in event_f flags. The most useful values are:

O_LARGEFILE
Enable support for files exceeding 2 GB. Failing to set this flag will result in an
EOVERFLOW error when trying to open a large file which is monitored by an
fanotify group on a 32-bit system.

O_CLOEXEC (since Linux 3.18)
Enable the close-on-exec flag for the file descriptor. See the description of the
O_CLOEXEC flag in open(2) for reasons why this may be useful.

The following are also allowable: O_APPEND, O_DSYNC, O_NOATIME, O_NON-
BLOCK, and O_SYNC. Specifying any other flag in event f flags yields the error
EINVAL (but see BUGS).

RETURN VALUE
On success, fanotify_init() returns a new file descriptor. On error, —1 is returned, and
errno is set to indicate the error.

ERRORS
EINVAL
An invalid value was passed in flags or event f flags.
FAN_ALL_INIT_FLAGS (deprecated since Linux 4.20) defines all allowable
bits for flags.

EMFILE
The number of fanotify groups for this user exceeds the limit. See fanotify(7) for
details about this limit.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENOMEM
The allocation of memory for the notification group failed.

ENOSYS
This kernel does not implement fanotify_init(). The fanotify API is available
only if the kernel was configured with CONFIG_FANOTIFY.

EPERM
The operation is not permitted because the caller lacks a required capability.

VERSIONS
Prior to Linux 5.13, calling fanotify_init() required the CAP_SYS_ADMIN capability.
Since Linux 5.13, users may call fanotify_init() without the CAP_SYS_ADMIN capa-
bility to create and initialize an fanotify group with limited functionality.

Linux man-pages 6.8 2024-05-02 193

fanotify_init(2) System Calls Manual fanotify_init(2)

The limitations imposed on an event listener created by a user without the
CAP_SYS_ADMIN capability are as follows:

* The user cannot request for an unlimited event queue by using FAN_UN-
LIMITED_QUEUE.

* The user cannot request for an unlimited number of marks by using
FAN_UNLIMITED_MARKS.

e The user cannot request to use either notification classes
FAN_CLASS CONTENT or FAN_CLASS PRE_CONTENT. This
means that user cannot request permission events.

» The user is required to create a group that identifies filesystem objects by file
handles, for example, by providing the FAN_REPORT_FID flag.

e The user is limited to only mark inodes. The ability to mark a mount or
filesystem via fanotify_mark() through the use of FAN_MARK_MOUNT
or FAN_ MARK_FILESYSTEM is not permitted.

» The event object in the event queue is limited in terms of the information that
is made available to the unprivileged user. A user will also not receive the
pid that generated the event, unless the listening process itself generated the
event.

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

BUGS

The following bug was present before Linux 3.18:
* The O_CLOEXEC is ignored when passed in event_f_flags.
The following bug was present before Linux 3.14:

* The event_f flags argument is not checked for invalid flags. Flags that are intended
only for internal use, such as FMODE_EXEC, can be set, and will consequently be
set for the file descriptors returned when reading from the fanotify file descriptor.

SEE ALSO
fanotify_mark(2), fanotify(7)

Linux man-pages 6.8 2024-05-02 194

fanotify_mark(2) System Calls Manual fanotify_mark(2)

NAME

fanotify_mark — add, remove, or modify an fanotify mark on a filesystem object
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/fanotify.h>

int fanotify_mark(int fanotify_fd, unsigned int flags,
uint64_t mask, int dirfd,
const char *_Nullable pathname);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_mark() adds, removes, or modifies an fanotify mark on a filesystem object.
The caller must have read permission on the filesystem object that is to be marked.

The fanotify_fd argument is a file descriptor returned by fanotify _init(2).

flags is a bit mask describing the modification to perform. It must include exactly one
of the following values:

FAN_MARK_ADD
The events in mask will be added to the mark mask (or to the ignore mask).
mask must be nonempty or the error EINVAL will occur.

FAN_MARK_REMOVE
The events in argument mask will be removed from the mark mask (or from the
ignore mask). mask must be nonempty or the error EINVAL will occur.

FAN_MARK_FLUSH

Remove either all marks for filesystems, all marks for mounts, or all marks for
directories and files from the fanotify group. If flags contains
FAN_MARK_MOUNT, all marks for mounts are removed from the group. If
flags contains FAN_MARK_FILESYSTEM, all marks for filesystems are re-
moved from the group. Otherwise, all marks for directories and files are re-
moved. No flag other than, and at most one of, the flags
FAN_MARK_MOUNT or FAN. MARK_FILESYSTEM can be used in con-
junction with FAN_MARK_FLUSH. mask is ignored.

If none of the values above is specified, or more than one is specified, the call fails with
the error EINVAL.

In addition, zero or more of the following values may be ORed into flags:

FAN_MARK_DONT_FOLLOW
If pathname is a symbolic link, mark the link itself, rather than the file to which
it refers. (By default, fanotify_mark() dereferences pathname if it is a symbolic
link.)

FAN_MARK_ONLYDIR
If the filesystem object to be marked is not a directory, the error ENOTDIR shall
be raised.

Linux man-pages 6.8 2024-05-02 195

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_MARK_MOUNT

Mark the mount specified by pathname. If pathname is not itself a mount point,
the mount containing pathname will be marked. All directories, subdirectories,
and the contained files of the mount will be monitored. The events which re-
quire that filesystem objects are identified by file handles, such as FAN_CRE-
ATE, FAN_ATTRIB, FAN_MOVE, and FAN_DELETE_SELF, cannot be
provided as a mask when flags contains FAN_MARK_MOUNT. Attempting
to do so will result in the error EINVAL being returned. Use of this flag requires
the CAP_SYS_ADMIN capability.

FAN_MARK_FILESYSTEM (since Linux 4.20)
Mark the filesystem specified by pathname. The filesystem containing path-
name will be marked. All the contained files and directories of the filesystem
from any mount point will be monitored. Use of this flag requires the
CAP_SYS_ADMIN capability.

FAN_MARK_IGNORED_MASK

The events in mask shall be added to or removed from the ignore mask. Note
that the flags FAN_ONDIR, and FAN_EVENT_ON_CHILD have no effect
when provided with this flag. The effect of setting the flags FAN_ONDIR, and
FAN_EVENT_ON_CHILD in the mark mask on the events that are set in the
ignore mask is undefined and depends on the Linux kernel version. Specifically,
prior to Linux 5.9, setting a mark mask on a file and a mark with ignore mask on
its parent directory would not result in ignoring events on the file, regardless of
the FAN_EVENT_ON_CHILD flag in the parent directory’s mark mask. When
the ignore mask is updated with the FAN_MARK_IGNORED_MASK flag on
a mark that was previously updated with the FAN_MARK IGNORE flag, the
update fails with EEXIST error.

FAN_MARK_IGNORE (since Linux 6.0)

This flag has a similar effect as setting the FAN_MARK _IGNORED_MASK
flag. The events in mask shall be added to or removed from the ignore mask.
Unlike the FAN_MARK _IGNORED_MASK flag, this flag also has the effect
that the FAN_ONDIR, and FAN_EVENT_ON_CHILD flags take effect on the
ignore mask. Specifically, unless the FAN_ONDIR flag is set with
FAN_MARK_IGNORE, events on directories will not be ignored. If the flag
FAN_EVENT_ON_CHILD is set with FAN_MARK_IGNORE, events on
children will be ignored. For example, a mark on a directory with combination
of a mask with FAN_CREATE event and FAN_ONDIR flag and an ignore
mask with FAN_CREATE event and without FAN_ONDIR flag, will result in
getting only the events for creation of sub-directories. When using the
FAN_MARK _IGNORE flag to add to an ignore mask of a mount, filesystem, or
directory inode mark, the FAN_MARK_IGNORED_SURV_MODIFY flag
must be specified. Failure to do so will results with EINVAL or EISDIR error.

FAN_MARK_IGNORED_SURV_MODIFY
The ignore mask shall survive modify events. If this flag is not set, the ignore
mask is cleared when a modify event occurs on the marked object. Omitting this
flag is typically used to suppress events (e.g., FAN_OPEN) for a specific file,
until that specific file’s content has been modified. It is far less useful to sup-
press events on an entire filesystem, or mount, or on all files inside a directory,

Linux man-pages 6.8 2024-05-02 196

fanotify_mark(2) System Calls Manual fanotify_mark(2)

until some file’s content has been modified. For this reason, the
FAN_MARK _IGNORE flag requires the FAN_MARK_IG-
NORED_SURV_MODIFY flag on a mount, filesystem, or directory inode
mark. This flag cannot be removed from a mark once set. When the ignore
mask is updated without this flag on a mark that was previously updated with the
FAN_MARK_IGNORE and FAN_MARK_IGNORED_SURV_MODIFY
flags, the update fails with EEXIST error.

FAN_MARK_IGNORE_SURV
This is a synonym for (FAN_MARK_IGNORE|FAN_MARK IG-
NORED_SURV_MODIFY).

FAN_MARK_EVICTABLE (since Linux 5.19)

When an inode mark is created with this flag, the inode object will not be pinned
to the inode cache, therefore, allowing the inode object to be evicted from the in-
ode cache when the memory pressure on the system is high. The eviction of the
inode object results in the evictable mark also being lost. When the mask of an
evictable inode mark is updated without using the FAN_MARK_EVICATBLE
flag, the marked inode is pinned to inode cache and the mark is no longer
evictable. When the mask of a non-evictable inode mark is updated with the
FAN_MARK_EVICTABLE flag, the inode mark remains non-evictable and the
update fails with EEXIST error. Mounts and filesystems are not evictable ob-
jects, therefore, an attempt to create a mount mark or a filesystem mark with the
FAN_MARK_EVICTABLE flag, will result in the error EINVAL. For exam-
ple, inode marks can be used in combination with mount marks to reduce the
amount of events from noninteresting paths. The event listener reads events,
checks if the path reported in the event is of interest, and if it is not, the listener
sets a mark with an ignore mask on the directory. Evictable inode marks allow
using this method for a large number of directories without the concern of pin-
ning all inodes and exhausting the system’s memory.

mask defines which events shall be listened for (or which shall be ignored). It is a bit
mask composed of the following values:

FAN_ACCESS
Create an event when a file or directory (but see BUGS) is accessed (read).

FAN_MODIFY
Create an event when a file is modified (write).

FAN_CLOSE WRITE
Create an event when a writable file is closed.

FAN_CLOSE_NOWRITE
Create an event when a read-only file or directory is closed.

FAN_OPEN
Create an event when a file or directory is opened.

FAN_OPEN_EXEC (since Linux 5.0)
Create an event when a file is opened with the intent to be executed. See
NOTES for additional details.

Linux man-pages 6.8 2024-05-02 197

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_ATTRIB (since Linux 5.1)
Create an event when the metadata for a file or directory has changed. An fan-
otify group that identifies filesystem objects by file handles is required.

FAN_CREATE (since Linux 5.1)
Create an event when a file or directory has been created in a marked parent di-
rectory. An fanotify group that identifies filesystem objects by file handles is re-
quired.

FAN_DELETE (since Linux 5.1)
Create an event when a file or directory has been deleted in a marked parent di-
rectory. An fanotify group that identifies filesystem objects by file handles is re-
quired.

FAN_DELETE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself is deleted. An fanotify
group that identifies filesystem objects by file handles is required.

FAN_FS ERROR (since Linux 5.16)
Create an event when a filesystem error leading to inconsistent filesystem meta-
data is detected. @ An additional information record of type
FAN_EVENT_INFO_TYPE_ERROR is returned for each event in the read
buffer. An fanotify group that identifies filesystem objects by file handles is re-
quired.

Events of such type are dependent on support from the underlying filesystem. At
the time of writing, only the ext4 filesystem reports FAN_FS_ERROR events.

See fanotify(7) for additional details.

FAN_MOVED_FROM (since Linux 5.1)
Create an event when a file or directory has been moved from a marked parent
directory. An fanotify group that identifies filesystem objects by file handles is
required.

FAN_MOVED_TO (since Linux 5.1)
Create an event when a file or directory has been moved to a marked parent di-
rectory. An fanotify group that identifies filesystem objects by file handles is re-
quired.

FAN_RENAME (since Linux 5.17)
This event contains the same information provided by events
FAN_MOVED_FROM and FAN_MOVED_TO, however is represented by a
single event with up to two information records. An fanotify group that identi-
fies filesystem objects by file handles is required. If the filesystem object to be
marked is not a directory, the error ENOTDIR shall be raised.

FAN_MOVE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself has been moved. An fan-
otify group that identifies filesystem objects by file handles is required.

FAN_OPEN_PERM
Create an event when a permission to open a file or directory is requested. An
fanotify file descriptor created with FAN_CLASS PRE_CONTENT or
FAN_CLASS_CONTENT is required.

Linux man-pages 6.8 2024-05-02 198

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_OPEN_EXEC_PERM (since Linux 5.0)
Create an event when a permission to open a file for execution is requested. An
fanotify file descriptor created with FAN_CLASS PRE_CONTENT or
FAN_CLASS _CONTENT is required. See NOTES for additional details.

FAN_ACCESS_PERM
Create an event when a permission to read a file or directory is requested. An
fanotify file descriptor created with FAN_CLASS PRE_CONTENT or
FAN_CLASS _CONTENT is required.

FAN_ONDIR
Create events for directories—for example, when opendir(3), readdir(3) (but see
BUGS), and closedir(3) are called. Without this flag, events are created only for
files. In the context of directory entry events, such as FAN_CREATE,
FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO, specifying
the flag FAN_ONDIR is required in order to create events when subdirectory
entries are modified (i.e., mkdir(2)/ rmdir(2)).

FAN_EVENT_ON_CHILD

Events for the immediate children of marked directories shall be created. The
flag has no effect when marking mounts and filesystems. Note that events are
not generated for children of the subdirectories of marked directories. More
specifically, the directory entry modification events FAN_CREATE,
FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO are not gen-
erated for any entry modifications performed inside subdirectories of marked di-
rectories. Note that the events FAN_DELETE_SELF and FAN_MOVE_SELF
are not generated for children of marked directories. To monitor complete direc-
tory trees it is necessary to mark the relevant mount or filesystem.

The following composed values are defined:

FAN_CLOSE

A file is closed (FAN_CLOSE_WRITE|FAN_CLOSE_NOWRITE).
FAN_MOVE

A file or directory has been moved

(FAN_MOVED_FROM|FAN_MOVED_TO).

The filesystem object to be marked is determined by the file descriptor dirfd and the
pathname specified in pathname:

» If pathname is NULL, dirfd defines the filesystem object to be marked.

» If pathname is NULL, and dirfd takes the special value AT_FDCWD, the current
working directory is to be marked.

* If pathname is absolute, it defines the filesystem object to be marked, and dirfd is
ignored.

» If pathname is relative, and dirfd does not have the value AT_FDCWD, then the
filesystem object to be marked is determined by interpreting pathname relative the
directory referred to by dirfd.

* If pathname is relative, and dirfd has the value AT_FDCWD, then the filesystem
object to be marked is determined by interpreting pathname relative to the current
working directory. (See openat(2) for an explanation of why the dirfd argument is

Linux man-pages 6.8 2024-05-02 199

fanotify_mark(2) System Calls Manual fanotify_mark(2)

useful.)

RETURN VALUE
On success, fanotify_mark() returns 0. On error, —1 is returned, and errno is set to in-
dicate the error.

ERRORS
EBADF
An invalid file descriptor was passed in fanotify_fd.

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was up-
dated without the FAN_MARK_EVICTABLE flag, and the user attempted to
update the mark with FAN_MARK_EVICTABLE flag.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was up-
dated with the FAN_MARK_IGNORE flag, and the user attempted to update
the mark with FAN_MARK_IGNORED_MASK flag.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was up-
dated with the FAN_MARK_IGNORE and FAN_MARK_IG-
NORED_SURV_MODIFY flags, and the user attempted to update the mark
only with FAN_MARK_IGNORE flag.

EINVAL
An invalid value was passed in flags or mask, or fanotify_fd was not an fanotify
file descriptor.

EINVAL
The fanotify file descriptor was opened with FAN_CLASS _NOTIF or the fan-
otify group identifies filesystem objects by file handles and mask contains a flag
for permission events (FAN_OPEN_PERM or FAN_ACCESS_PERM).

EINVAL
The group was initialized without FAN_REPORT_FID but one or more event
types specified in the mask require it.

EINVAL
flags contains FAN_MARK _IGNORE, and either FAN_MARK_MOUNT or
FAN_MARK_FILESYSTEM, but does not contain FAN_MARK_IG-
NORED_SURV_MODIFY.

EISDIR
flags contains FAN_MARK_IGNORE, but does not contain
FAN_MARK_IGNORED_SURV_MODIFY, and dirfd and pathname specify
a directory.

ENODEV
The filesystem object indicated by dirfd and pathname is not associated with a
filesystem that supports fsid (e.g., fuse(4)). tmpfs(5) did not support fsid prior
to Linux 5.13. This error can be returned only with an fanotify group that

Linux man-pages 6.8 2024-05-02 200

fanotify_mark(2) System Calls Manual fanotify_mark(2)

identifies filesystem objects by file handles.

ENOENT
The filesystem object indicated by dirfd and pathname does not exist. This error
also occurs when trying to remove a mark from an object which is not marked.

ENOMEM
The necessary memory could not be allocated.

ENOSPC
The number of marks for this user exceeds the limit and the FAN_UNLIM-
ITED_MARKS flag was not specified when the fanotify file descriptor was cre-
ated with fanotify init(2). See fanotify(7) for details about this limit.

ENOSYS
This kernel does not implement fanotify_mark(). The fanotify API is available
only if the kernel was configured with CONFIG_FANOTIFY.

ENOTDIR
flags contains FAN_MARK_ONLYDIR, and dirfd and pathname do not spec-
ify a directory.

ENOTDIR
mask contains FAN_RENAME, and dirfd and pathname do not specify a direc-
tory.

ENOTDIR
flags contains FAN_MARK IGNORE, or the fanotify group was initialized
with flag FAN_REPORT_TARGET_FID, and mask contains directory entry
modification events (e.g., FAN_CREATE, FAN_DELETE), or directory event
flags (e.g., FAN_ONDIR, FAN_EVENT_ON_CHILD), and dirfd and path-
name do not specify a directory.

EOPNOTSUPP
The object indicated by pathname is associated with a filesystem that does not
support the encoding of file handles. This error can be returned only with an
fanotify group that identifies filesystem objects by file handles. Calling
name_to_handle_at(2) with the flag AT_HANDLE_FID (since Linux 6.5) can
be used as a test to check if a filesystem supports reporting events with file han-
dles.

EPERM
The operation is not permitted because the caller lacks a required capability.

EXDEV
The filesystem object indicated by pathname resides within a filesystem subvol-
ume (e.g., btrfs(5)) which uses a different fsid than its root superblock. This er-
ror can be returned only with an fanotify group that identifies filesystem objects
by file handles.

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

Linux man-pages 6.8 2024-05-02 201

fanotify_mark(2) System Calls Manual fanotify_mark(2)

NOTES
FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM

When using either FAN_OPEN_EXEC or FAN_OPEN_EXEC_PERM within the
mask, events of these types will be returned only when the direct execution of a program
occurs. More specifically, this means that events of these types will be generated for
files that are opened using execve(2), execveat(2), or uselib(2). Events of these types
will not be raised in the situation where an interpreter is passed (or reads) a file for inter-
pretation.

Additionally, if a mark has also been placed on the Linux dynamic linker, a user should
also expect to receive an event for it when an ELF object has been successfully opened
using execve(2) or execveat(2).

For example, if the following ELF binary were to be invoked and a FAN_OPEN_EXEC
mark has been placed on /:

$ /bin/echo foo

The listening application in this case would receive FAN_OPEN_EXEC events for both
the ELF binary and interpreter, respectively:

/bin/echo
/1i1b64/1d-11nux—x86-64_.s0.2

BUGS
The following bugs were present in before Linux 3.16:

» If flags contains FAN_MARK_ FLUSH, dirfd, and pathname must specify a valid
filesystem object, even though this object is not used.

» readdir(2) does not generate a FAN_ACCESS event.

* If fanotify_mark() is called with FAN_MARK_ FLUSH, flags is not checked for
invalid values.

SEE ALSO
fanotify_init(2), fanotify(7)

Linux man-pages 6.8 2024-05-02 202

fentl(2) System Calls Manual fentl(2)

NAME

fentl — manipulate file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <fcntl.h>
int fentl(int fd, int op, ... /* arg */);

DESCRIPTION
fcntl() performs one of the operations described below on the open file descriptor fd.
The operation is determined by op.

fcntl() can take an optional third argument. Whether or not this argument is required is
determined by op. The required argument type is indicated in parentheses after each op
name (in most cases, the required type is int, and we identify the argument using the
name arg), or void is specified if the argument is not required.

Certain of the operations below are supported only since a particular Linux kernel ver-
sion. The preferred method of checking whether the host kernel supports a particular
operation is to invoke fcntl() with the desired op value and then test whether the call
failed with EINVAL, indicating that the kernel does not recognize this value.

Duplicating a file descriptor
F_DUPFD (int)
Duplicate the file descriptor fd using the lowest-numbered available file descrip-
tor greater than or equal to arg. This is different from dup2(2), which uses ex-
actly the file descriptor specified.

On success, the new file descriptor is returned.
See dup(2) for further details.

F _DUPFD_CLOEXEC (int; since Linux 2.6.24)
As for F_DUPFD, but additionally set the close-on-exec flag for the duplicate
file descriptor. Specifying this flag permits a program to avoid an additional fc-
ntl() F_SETFD operation to set the FD_CLOEXEC flag. For an explanation of
why this flag is useful, see the description of O_CLOEXEC in open(2).

File descriptor flags
The following operations manipulate the flags associated with a file descriptor. Cur-
rently, only one such flag is defined: FD_CLOEXEC, the close-on-exec flag. If the
FD_CLOEXEC bhit is set, the file descriptor will automatically be closed during a suc-
cessful execve(2). (If the execve(2) fails, the file descriptor is left open.) If the
FD_CLOEXEC bit is not set, the file descriptor will remain open across an execve(2).

F_GETFD (void)
Return (as the function result) the file descriptor flags; arg is ignored.
F_SETFD (int)
Set the file descriptor flags to the value specified by arg.
In multithreaded programs, using fcntl() F_SETFD to set the close-on-exec flag at the

same time as another thread performs a fork(2) plus execve(2) is vulnerable to a race
condition that may unintentionally leak the file descriptor to the program executed in the

Linux man-pages 6.8 2024-05-02 203

fentl(2) System Calls Manual fentl(2)

child process. See the discussion of the O_CLOEXEC flag in open(2) for details and a
remedy to the problem.

File status flags
Each open file description has certain associated status flags, initialized by open(2) and
possibly modified by fentl(). Duplicated file descriptors (made with dup(2), fc-
ntl(F_DUPFD), fork(2), etc.) refer to the same open file description, and thus share the
same file status flags.

The file status flags and their semantics are described in open(2).

F_GETFL (void)
Return (as the function result) the file access mode and the file status flags; arg is
ignored.

F_SETFL (int)
Set the file status flags to the value specified by arg. File access mode
(O_RDONLY, O WRONLY, O RDWR) and file creation flags (i.e.,
O_CREAT, O EXCL, O_NOCTTY, O_TRUNC) in arg are ignored. On
Linux, this operation can change only the O_APPEND, O_ASYNC, O _DI-
RECT, O_NOATIME, and O_NONBLOCK flags. It is not possible to change
the O_DSYNC and O_SYNC flags; see BUGS, below.

Advisory record locking
Linux implements traditional ("process-associated™) UNIX record locks, as standardized
by POSIX. For a Linux-specific alternative with better semantics, see the discussion of
open file description locks below.

F SETLK, F_SETLKW, and F_GETLK are used to acquire, release, and test for the
existence of record locks (also known as byte-range, file-segment, or file-region locks).
The third argument, lock, is a pointer to a structure that has at least the following fields
(in unspecified order).

struct flock {

short 1_type; /* Type of lock: F_RDLCK,
F_WRLCK, F_UNLCK */
short 1 _whence; /* How to interpret l_start:
SEEK_SET, SEEK _CUR, SEEK END */
off_t | _start; /* Starting offset for lock */
off t I len; /* Number of bytes to lock */
pid t 1 pid; /* PID of process blocking our lock
(set by F_GETLK and F_OFD_GETLK)

33
The |_whence, |_start, and |_len fields of this structure specify the range of bytes we

wish to lock. Bytes past the end of the file may be locked, but not bytes before the start
of the file.

|_start is the starting offset for the lock, and is interpreted relative to either: the start of
the file (if | _whence is SEEK SET); the current file offset (if | _whence is
SEEK_CUR); or the end of the file (if | _whence is SEEK_END). In the final two
cases, |_start can be a negative number provided the offset does not lie before the start

Linux man-pages 6.8 2024-05-02 204

fentl(2) System Calls Manual fentl(2)

of the file.

|_len specifies the number of bytes to be locked. If |_len is positive, then the range to be
locked covers bytes |_start up to and including |_start+l_len—1. Specifying O for |_len
has the special meaning: lock all bytes starting at the location specified by |_whence and
|_start through to the end of file, no matter how large the file grows.

POSIX.1-2001 allows (but does not require) an implementation to support a negative
|_len value; if |_len is negative, the interval described by lock covers bytes |_start+]_len
up to and including |_start—1. This is supported since Linux 2.4.21 and Linux 2.5.49.

The |_type field can be used to place a read (F_RDLCK) or a write (F_ WRLCK) lock
on a file. Any number of processes may hold a read lock (shared lock) on a file region,
but only one process may hold a write lock (exclusive lock). An exclusive lock excludes
all other locks, both shared and exclusive. A single process can hold only one type of
lock on a file region; if a new lock is applied to an already-locked region, then the exist-
ing lock is converted to the new lock type. (Such conversions may involve splitting,
shrinking, or coalescing with an existing lock if the byte range specified by the new lock
does not precisely coincide with the range of the existing lock.)

F_SETLK (struct flock *)
Acquire a lock (when |_type is F_RDLCK or F_WRLCK) or release a lock
(when |_type is F_UNLCK) on the bytes specified by the |_whence, |_start, and
|_len fields of lock. If a conflicting lock is held by another process, this call re-
turns —1 and sets errno to EACCES or EAGAIN. (The error returned in this
case differs across implementations, so POSIX requires a portable application to
check for both errors.)

F _SETLKW (struct flock *)
As for F_SETLK, but if a conflicting lock is held on the file, then wait for that
lock to be released. If a signal is caught while waiting, then the call is inter-
rupted and (after the signal handler has returned) returns immediately (with re-
turn value —1 and errno set to EINTR; see signal(7)).

F _GETLK (struct flock *)
On input to this call, lock describes a lock we would like to place on the file. If
the lock could be placed, fcntl() does not actually place it, but returns
F_UNLCK in the I_type field of lock and leaves the other fields of the structure
unchanged.

If one or more incompatible locks would prevent this lock being placed, then fc-
ntl() returns details about one of those locks in the | _type, | whence, |_start, and
|_len fields of lock. If the conflicting lock is a traditional (process-associated)
record lock, then the |_pid field is set to the PID of the process holding that lock.
If the conflicting lock is an open file description lock, then |_pid is set to —1.
Note that the returned information may already be out of date by the time the
caller inspects it.

In order to place a read lock, fd must be open for reading. In order to place a write
lock, fd must be open for writing. To place both types of lock, open a file read-write.

When placing locks with F_SETLKW, the kernel detects deadlocks, whereby two or
more processes have their lock requests mutually blocked by locks held by the other
processes. For example, suppose process A holds a write lock on byte 100 of a file, and

Linux man-pages 6.8 2024-05-02 205

fentl(2) System Calls Manual fentl(2)

process B holds a write lock on byte 200. If each process then attempts to lock the byte
already locked by the other process using F_SETLKW, then, without deadlock detec-
tion, both processes would remain blocked indefinitely. When the kernel detects such
deadlocks, it causes one of the blocking lock requests to immediately fail with the error
EDEADLK; an application that encounters such an error should release some of its
locks to allow other applications to proceed before attempting regain the locks that it re-
quires. Circular deadlocks involving more than two processes are also detected. Note,
however, that there are limitations to the kernel’s deadlock-detection algorithm; see
BUGS.

As well as being removed by an explicit F_UNLCK, record locks are automatically re-
leased when the process terminates.

Record locks are not inherited by a child created via fork(2), but are preserved across an
execve(2).

Because of the buffering performed by the stdio(3) library, the use of record locking
with routines in that package should be avoided; use read(2) and write(2) instead.

The record locks described above are associated with the process (unlike the open file
description locks described below). This has some unfortunate consequences:

» If a process closes any file descriptor referring to a file, then all of the process’s
locks on that file are released, regardless of the file descriptor(s) on which the locks
were obtained. This is bad: it means that a process can lose its locks on a file such
as /etc/passwd or /etc/mtab when for some reason a library function decides to
open, read, and close the same file.

* The threads in a process share locks. In other words, a multithreaded program can’t
use record locking to ensure that threads don’t simultaneously access the same re-
gion of a file.

Open file description locks solve both of these problems.

Open file description locks (non-POSIX)
Open file description locks are advisory byte-range locks whose operation is in most re-
spects identical to the traditional record locks described above. This lock type is Linux-
specific, and available since Linux 3.15. (There is a proposal with the Austin Group to
include this lock type in the next revision of POSIX.1.) For an explanation of open file
descriptions, see open(2).

The principal difference between the two lock types is that whereas traditional record
locks are associated with a process, open file description locks are associated with the
open file description on which they are acquired, much like locks acquired with flock(2).
Consequently (and unlike traditional advisory record locks), open file description locks
are inherited across fork(2) (and clone(2) with CLONE_FILES), and are only automati-
cally released on the last close of the open file description, instead of being released on
any close of the file.

Conflicting lock combinations (i.e., a read lock and a write lock or two write locks)
where one lock is an open file description lock and the other is a traditional record lock
conflict even when they are acquired by the same process on the same file descriptor.

Open file description locks placed via the same open file description (i.e., via the same
file descriptor, or via a duplicate of the file descriptor created by fork(2), dup(2), fcntl()

Linux man-pages 6.8 2024-05-02 206

fentl(2) System Calls Manual fentl(2)

F_DUPFD, and so on) are always compatible: if a new lock is placed on an already
locked region, then the existing lock is converted to the new lock type. (Such conver-
sions may result in splitting, shrinking, or coalescing with an existing lock as discussed
above.)

On the other hand, open file description locks may conflict with each other when they
are acquired via different open file descriptions. Thus, the threads in a multithreaded
program can use open file description locks to synchronize access to a file region by
having each thread perform its own open(2) on the file and applying locks via the result-
ing file descriptor.

As with traditional advisory locks, the third argument to fcntl(), lock, is a pointer to an
flock structure. By contrast with traditional record locks, the |_pid field of that structure
must be set to zero when using the operations described below.

The operations for working with open file description locks are analogous to those used
with traditional locks:

F OFD_SETLK (struct flock *)
Acquire an open file description lock (when 1 type is F_RDLCK or
F WRLCK) or release an open file description lock (when 1 type is
F_UNLCK) on the bytes specified by the |_whence, |_start, and |_len fields of
lock. If a conflicting lock is held by another process, this call returns —1 and sets
errno to EAGAIN.

F OFD_SETLKW (struct flock *)
As for F_OFD_SETLK, but if a conflicting lock is held on the file, then wait for
that lock to be released. If a signal is caught while waiting, then the call is inter-
rupted and (after the signal handler has returned) returns immediately (with re-
turn value —1 and errno set to EINTR; see signal(7)).

F OFD_GETLK (struct flock *)
On input to this call, lock describes an open file description lock we would like
to place on the file. If the lock could be placed, fcntl() does not actually place it,
but returns F_UNLCK in the |_type field of lock and leaves the other fields of
the structure unchanged. If one or more incompatible locks would prevent this
lock being placed, then details about one of these locks are returned via lock, as
described above for F_ GETLK.

In the current implementation, no deadlock detection is performed for open file descrip-
tion locks. (This contrasts with process-associated record locks, for which the kernel
does perform deadlock detection.)

Mandatory locking
Warning: the Linux implementation of mandatory locking is unreliable. See BUGS be-
low. Because of these bugs, and the fact that the feature is believed to be little used,
since Linux 4.5, mandatory locking has been made an optional feature, governed by a
configuration option (CONFIG_MANDATORY_FILE_LOCKING). This feature is
no longer supported at all in Linux 5.15 and above.

By default, both traditional (process-associated) and open file description record locks
are advisory. Advisory locks are not enforced and are useful only between cooperating
processes.

Linux man-pages 6.8 2024-05-02 207

fentl(2) System Calls Manual fentl(2)

Both lock types can also be mandatory. Mandatory locks are enforced for all processes.
If a process tries to perform an incompatible access (e.g., read(2) or write(2)) on a file
region that has an incompatible mandatory lock, then the result depends upon whether
the O_NONBLOCK flag is enabled for its open file description. If the O_NON-
BLOCK flag is not enabled, then the system call is blocked until the lock is removed or
converted to a mode that is compatible with the access. If the O_NONBLOCK flag is
enabled, then the system call fails with the error EAGAIN.

To make use of mandatory locks, mandatory locking must be enabled both on the
filesystem that contains the file to be locked, and on the file itself. Mandatory locking is
enabled on a filesystem using the "—o0 mand" option to mount(8), or the MS_MAND-
LOCK flag for mount(2). Mandatory locking is enabled on a file by disabling group ex-
ecute permission on the file and enabling the set-group-1D permission bit (see chmod (1)
and chmod(2)).

Mandatory locking is not specified by POSIX. Some other systems also support manda-
tory locking, although the details of how to enable it vary across systems.

Lost locks
When an advisory lock is obtained on a networked filesystem such as NFS it is possible
that the lock might get lost. This may happen due to administrative action on the server,
or due to a network partition (i.e., loss of network connectivity with the server) which
lasts long enough for the server to assume that the client is no longer functioning.

When the filesystem determines that a lock has been lost, future read(2) or write(2) re-
quests may fail with the error EIO. This error will persist until the lock is removed or
the file descriptor is closed. Since Linux 3.12, this happens at least for NFSv4 (includ-
ing all minor versions).

Some versions of UNIX send a signal (SIGLOST) in this circumstance. Linux does not
define this signal, and does not provide any asynchronous notification of lost locks.

Managing signals
F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and
F_SETSIG are used to manage 1/0O availability signals:

F_GETOWN (void)
Return (as the function result) the process ID or process group ID currently re-
ceiving SIGIO and SIGURG signals for events on file descriptor fd. Process
IDs are returned as positive values; process group IDs are returned as negative
values (but see BUGS below). arg is ignored.

F_SETOWN (int)
Set the process ID or process group ID that will receive SIGIO and SIGURG
signals for events on the file descriptor fd. The target process or process group
ID is specified in arg. A process ID is specified as a positive value; a process
group ID is specified as a negative value. Most commonly, the calling process
specifies itself as the owner (that is, arg is specified as getpid(2)).

As well as setting the file descriptor owner, one must also enable generation of
signals on the file descriptor. This is done by using the fcntl() F_SETFL opera-
tion to set the O_ASYNC file status flag on the file descriptor. Subsequently, a
SIGIO signal is sent whenever input or output becomes possible on the file de-
scriptor. The fcntl() F_SETSIG operation can be used to obtain delivery of a

Linux man-pages 6.8 2024-05-02 208

fentl(2) System Calls Manual fentl(2)

signal other than SIGIO.

Sending a signal to the owner process (group) specified by F_ SETOWN is sub-
ject to the same permissions checks as are described for kill(2), where the send-
ing process is the one that employs F_ SETOWN (but see BUGS below). If this
permission check fails, then the signal is silently discarded. Note: The F_SE-
TOWN operation records the caller’s credentials at the time of the fcntl() call,
and it is these saved credentials that are used for the permission checks.

If the file descriptor fd refers to a socket, F_ SETOWN also selects the recipient
of SIGURG signals that are delivered when out-of-band data arrives on that
socket. (SIGURG is sent in any situation where select(2) would report the
socket as having an "exceptional condition™.)

The following was true in Linux 2.6.x up to and including Linux 2.6.11:

If a nonzero value is given to F_SETSIG in a multithreaded process run-
ning with a threading library that supports thread groups (e.g., NPTL),
then a positive value given to F_SETOWN has a different meaning: in-
stead of being a process ID identifying a whole process, it is a thread 1D
identifying a specific thread within a process. Consequently, it may be
necessary to pass F_SETOWN the result of gettid(2) instead of getpid(2)
to get sensible results when F_SETSIG is used. (In current Linux
threading implementations, a main thread’s thread ID is the same as its
process ID. This means that a single-threaded program can equally use
gettid(2) or getpid(2) in this scenario.) Note, however, that the state-
ments in this paragraph do not apply to the SIGURG signal generated for
out-of-band data on a socket: this signal is always sent to either a process
or a process group, depending on the value given to F_SETOWN.

The above behavior was accidentally dropped in Linux 2.6.12, and won’t be re-
stored. From Linux 2.6.32 onward, use F_SETOWN_EX to target SIGIO and
SIGURG signals at a particular thread.

F_GETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
Return the current file descriptor owner settings as defined by a previous F_SE-
TOWN_EX operation. The information is returned in the structure pointed to
by arg, which has the following form:

struct T _owner_ex {
int type;
pid_t pid;
}:
The type field will have one of the values F OWNER_TID, F_ OWNER_PID,
or F_ OWNER_PGRP. The pid field is a positive integer representing a thread
ID, process ID, or process group ID. See F_ SETOWN_EX for more details.

F_SETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
This operation performs a similar task to F_ SETOWN. It allows the caller to di-
rect 1/O availability signals to a specific thread, process, or process group. The
caller specifies the target of signals via arg, which is a pointer to a f_owner_ex
structure. The type field has one of the following values, which define how pid
is interpreted:

Linux man-pages 6.8 2024-05-02 209

fentl(2) System Calls Manual fentl(2)

F OWNER_TID
Send the signal to the thread whose thread ID (the value returned by a
call to clone(2) or gettid(2)) is specified in pid.

F_OWNER_PID
Send the signal to the process whose ID is specified in pid.

F OWNER_PGRP
Send the signal to the process group whose ID is specified in pid. (Note
that, unlike with F_SETOWN, a process group ID is specified as a posi-
tive value here.)

F_GETSIG (void)
Return (as the function result) the signal sent when input or output becomes pos-
sible. A value of zero means SIGIO is sent. Any other value (including SIGIO)
is the signal sent instead, and in this case additional info is available to the signal
handler if installed with SA_SIGINFO. arg is ignored.

F_SETSIG (int)
Set the signal sent when input or output becomes possible to the value given in
arg. A value of zero means to send the default SIGIO signal. Any other value
(including SIGIO) is the signal to send instead, and in this case additional info is
available to the signal handler if installed with SA_SIGINFO.

By using F_SETSIG with a nonzero value, and setting SA_SIGINFO for the
signal handler (see sigaction(2)), extra information about 1/0 events is passed to
the handler in a siginfo_t structure. If the si_code field indicates the source is
SI_SIGIO, the si_fd field gives the file descriptor associated with the event.
Otherwise, there is no indication which file descriptors are pending, and you
should use the usual mechanisms (select(2), poll(2), read(2) with O_NON-
BLOCK set etc.) to determine which file descriptors are available for 1/0.

Note that the file descriptor provided in si_fd is the one that was specified during
the F_SETSIG operation. This can lead to an unusual corner case. If the file
descriptor is duplicated (dup(2) or similar), and the original file descriptor is
closed, then 1/0O events will continue to be generated, but the si_fd field will con-
tain the number of the now closed file descriptor.

By selecting a real time signal (value >= SIGRTMIN), multiple I/O events may
be queued using the same signal numbers. (Queuing is dependent on available
memory.) Extra information is available if SA_SIGINFO is set for the signal
handler, as above.

Note that Linux imposes a limit on the number of real-time signals that may be
queued to a process (see getrlimit(2) and signal(7)) and if this limit is reached,
then the kernel reverts to delivering SIGIO, and this signal is delivered to the en-
tire process rather than to a specific thread.

Using these mechanisms, a program can implement fully asynchronous 1/0 without us-
ing select(2) or poll(2) most of the time.

The use of O_ASYNC is specific to BSD and Linux. The only use of F_GETOWN
and F_SETOWN specified in POSIX.1 is in conjunction with the use of the SIGURG
signal on sockets. (POSIX does not specify the SIGIO signal.) F_GETOWN_EX,

Linux man-pages 6.8 2024-05-02 210

fentl(2) System Calls Manual fentl(2)

F SETOWN_EX, F_GETSIG, and F_SETSIG are Linux-specific. POSIX has asyn-
chronous 1/0 and the aio_sigevent structure to achieve similar things; these are also
available in Linux as part of the GNU C Library (glibc).

Leases
F SETLEASE and F_GETLEASE (Linux 2.4 onward) are used to establish a new
lease, and retrieve the current lease, on the open file description referred to by the file
descriptor fd. A file lease provides a mechanism whereby the process holding the lease
(the "lease holder™) is notified (via delivery of a signal) when a process (the "lease
breaker") tries to open(2) or truncate(2) the file referred to by that file descriptor.

F_SETLEASE (int)
Set or remove a file lease according to which of the following values is specified
in the integer arg:

F RDLCK
Take out a read lease. This will cause the calling process to be notified
when the file is opened for writing or is truncated. A read lease can be
placed only on a file descriptor that is opened read-only.

F WRLCK
Take out a write lease. This will cause the caller to be notified when the
file is opened for reading or writing or is truncated. A write lease may be
placed on a file only if there are no other open file descriptors for the file.

F UNLCK
Remove our lease from the file.

Leases are associated with an open file description (see open(2)). This means that dupli-
cate file descriptors (created by, for example, fork(2) or dup(2)) refer to the same lease,
and this lease may be modified or released using any of these descriptors. Furthermore,
the lease is released by either an explicit F_UNLCK operation on any of these duplicate
file descriptors, or when all such file descriptors have been closed.

Leases may be taken out only on regular files. An unprivileged process may take out a
lease only on a file whose UID (owner) matches the filesystem UID of the process. A
process with the CAP_LEASE capability may take out leases on arbitrary files.

F_GETLEASE (void)
Indicates what type of lease is associated with the file descriptor fd by returning
either F_ RDLCK, F_WRLCK, or F_UNLCK, indicating, respectively, a read
lease , a write lease, or no lease. arg is ignored.

When a process (the "lease breaker™) performs an open(2) or truncate(2) that conflicts
with a lease established via F_SETLEASE, the system call is blocked by the kernel and
the kernel notifies the lease holder by sending it a signal (SIGIO by default). The lease
holder should respond to receipt of this signal by doing whatever cleanup is required in
preparation for the file to be accessed by another process (e.g., flushing cached buffers)
and then either remove or downgrade its lease. A lease is removed by performing an
F_SETLEASE operation specifying arg as F_UNLCK. If the lease holder currently
holds a write lease on the file, and the lease breaker is opening the file for reading, then
it is sufficient for the lease holder to downgrade the lease to a read lease. This is done
by performing an F_SETLEASE operation specifying arg as F_ RDLCK.

Linux man-pages 6.8 2024-05-02 211

fentl(2) System Calls Manual fentl(2)

If the lease holder fails to downgrade or remove the lease within the number of seconds
specified in /proc/sys/fs/lease—break—time, then the kernel forcibly removes or down-
grades the lease holder’s lease.

Once a lease break has been initiated, F_ GETLEASE returns the target lease type (ei-
ther F_ RDLCK or F_UNLCK, depending on what would be compatible with the lease
breaker) until the lease holder voluntarily downgrades or removes the lease or the kernel
forcibly does so after the lease break timer expires.

Once the lease has been voluntarily or forcibly removed or downgraded, and assuming
the lease breaker has not unblocked its system call, the kernel permits the lease breaker’s
system call to proceed.

If the lease breaker’s blocked open(2) or truncate(2) is interrupted by a signal handler,
then the system call fails with the error EINTR, but the other steps still occur as de-
scribed above. If the lease breaker is killed by a signal while blocked in open(2) or
truncate(2), then the other steps still occur as described above. If the lease breaker spec-
ifies the O_NONBLOCK flag when calling open(2), then the call immediately fails
with the error EWOULDBLOCK, but the other steps still occur as described above.

The default signal used to notify the lease holder is SIGIO, but this can be changed us-
ing the F_SETSIG operation to fcntl(). If a F_SETSIG operation is performed (even
one specifying SIGIO), and the signal handler is established using SA_SIGINFO, then
the handler will receive a siginfo_t structure as its second argument, and the si_fd field
of this argument will hold the file descriptor of the leased file that has been accessed by
another process. (This is useful if the caller holds leases against multiple files.)

File and directory change notification (dnotify)
F_NOTIFY (int)
(Linux 2.4 onward) Provide notification when the directory referred to by fd or
any of the files that it contains is changed. The events to be notified are specified
in arg, which is a bit mask specified by ORing together zero or more of the fol-
lowing bits:

DN_ACCESS
A file was accessed (read(2), pread(2), readv(2), and similar)
DN_MODIFY
A file was modified (write(2), pwrite(2), writev(2), truncate(2),
ftruncate(2), and similar).
DN_CREATE
A file was created (open(2), creat(2), mknod(2), mkdir(2), link(2),
symlink(2), rename(2) into this directory).
DN _DELETE
A file was unlinked (unlink(2), rename(2) to another directory,
rmdir(2)).
DN_RENAME
A file was renamed within this directory (rename(2)).
DN_ATTRIB
The attributes of a file were changed (chown(2), chmod(2), utime(2),
utimensat(2), and similar).

(In order to obtain these definitions, the _GNU_SOURCE feature test macro
must be defined before including any header files.)

Linux man-pages 6.8 2024-05-02 212

fentl(2) System Calls Manual fentl(2)

Directory notifications are normally "one-shot", and the application must reregis-
ter to receive further notifications. Alternatively, if DN_MULTISHOT is in-
cluded in arg, then notification will remain in effect until explicitly removed.

A series of F_NOTIFY requests is cumulative, with the events in arg being
added to the set already monitored. To disable notification of all events, make an
F_NOTIFY call specifying arg as 0.

Notification occurs via delivery of a signal. The default signal is SIGIO, but this
can be changed using the F_SETSIG operation to fcntl(). (Note that SIGIO is
one of the nonqueuing standard signals; switching to the use of a real-time signal
means that multiple notifications can be queued to the process.) In the latter
case, the signal handler receives a siginfo_t structure as its second argument (if
the handler was established using SA_SIGINFO) and the si_fd field of this
structure contains the file descriptor which generated the notification (useful
when establishing notification on multiple directories).

Especially when using DN_MULTISHOT, a real time signal should be used for
notification, so that multiple notifications can be queued.

NOTE: New applications should use the inotify interface (available since Linux
2.6.13), which provides a much superior interface for obtaining notifications of
filesystem events. See inotify(7).

Changing the capacity of a pipe
F_SETPIPE_SZ (int; since Linux 2.6.35)
Change the capacity of the pipe referred to by fd to be at least arg bytes. An un-
privileged process can adjust the pipe capacity to any value between the system
page size and the limit defined in /proc/sys/fs/pipe—max—size (see proc(5)). At-
tempts to set the pipe capacity below the page size are silently rounded up to the
page size. Attempts by an unprivileged process to set the pipe capacity above
the limit in /proc/sys/fs/pipe—max—size yield the error EPERM; a privileged
process (CAP_SYS_RESOURCE) can override the limit.

When allocating the buffer for the pipe, the kernel may use a capacity larger than
arg, if that is convenient for the implementation. (In the current implementation,
the allocation is the next higher power-of-two page-size multiple of the requested
size.) The actual capacity (in bytes) that is set is returned as the function result.

Attempting to set the pipe capacity smaller than the amount of buffer space cur-
rently used to store data produces the error EBUSY.

Note that because of the way the pages of the pipe buffer are employed when
data is written to the pipe, the number of bytes that can be written may be less
than the nominal size, depending on the size of the writes.

F_GETPIPE_SZ (void; since Linux 2.6.35)
Return (as the function result) the capacity of the pipe referred to by fd.

File Sealing
File seals limit the set of allowed operations on a given file. For each seal that is set on a
file, a specific set of operations will fail with EPERM on this file from now on. The file
is said to be sealed. The default set of seals depends on the type of the underlying file
and filesystem. For an overview of file sealing, a discussion of its purpose, and some

Linux man-pages 6.8 2024-05-02 213

fentl(2) System Calls Manual fentl(2)

code examples, see memfd_create(2).

Currently, file seals can be applied only to a file descriptor returned by memfd_create(2)
(if the MFD_ALLOW_SEALING was employed). On other filesystems, all fcntl() op-
erations that operate on seals will return EINVAL.

Seals are a property of an inode. Thus, all open file descriptors referring to the same in-
ode share the same set of seals. Furthermore, seals can never be removed, only added.

F_ADD_SEALS (int; since Linux 3.17)

Add the seals given in the bit-mask argument arg to the set of seals of the inode
referred to by the file descriptor fd. Seals cannot be removed again. Once this
call succeeds, the seals are enforced by the kernel immediately. If the current set
of seals includes F_SEAL_SEAL (see below), then this call will be rejected
with EPERM. Adding a seal that is already set is a no-op, in case
F _SEAL_SEAL is not set already. In order to place a seal, the file descriptor fd
must be writable.

F_GET_SEALS (void; since Linux 3.17)
Return (as the function result) the current set of seals of the inode referred to by
fd. 1f no seals are set, 0 is returned. If the file does not support sealing, -1 is re-
turned and errno is set to EINVAL.

The following seals are available:

F SEAL_SEAL
If this seal is set, any further call to fcntl() with F_ADD_SEALS fails with the
error EPERM. Therefore, this seal prevents any modifications to the set of seals
itself. If the initial set of seals of a file includes F_SEAL_SEAL, then this ef-
fectively causes the set of seals to be constant and locked.

F_SEAL_SHRINK
If this seal is set, the file in question cannot be reduced in size. This affects
open(2) with the O_TRUNC flag as well as truncate(2) and ftruncate(2). Those
calls fail with EPERM if you try to shrink the file in question. Increasing the
file size is still possible.

F_SEAL_GROW
If this seal is set, the size of the file in question cannot be increased. This affects
write(2) beyond the end of the file, truncate(2), ftruncate(2), and fallocate(2).
These calls fail with EPERM if you use them to increase the file size. If you
keep the size or shrink it, those calls still work as expected.

F SEAL_WRITE

If this seal is set, you cannot modify the contents of the file. Note that shrinking
or growing the size of the file is still possible and allowed. Thus, this seal is nor-
mally used in combination with one of the other seals. This seal affects write(2)
and fallocate(2) (only in combination with the FALLOC _FL_PUNCH_HOLE
flag). Those calls fail with EPERM if this seal is set. Furthermore, trying to
create new shared, writable memory-mappings via mmap(2) will also fail with
EPERM.

Using the F_ADD_SEALS operation to set the F_SEAL_WRITE seal fails
with EBUSY if any writable, shared mapping exists. Such mappings must be

Linux man-pages 6.8 2024-05-02 214

fentl(2) System Calls Manual fentl(2)

unmapped before you can add this seal. Furthermore, if there are any asynchro-
nous /O operations (io_submit(2)) pending on the file, all outstanding writes
will be discarded.

F_SEAL_FUTURE_WRITE (since Linux 5.1)
The effect of this seal is similar to F_SEAL_WRITE, but the contents of the file
can still be modified via shared writable mappings that were created prior to the
seal being set. Any attempt to create a new writable mapping on the file via
mmap(2) will fail with EPERM. Likewise, an attempt to write to the file via
write(2) will fail with EPERM.

Using this seal, one process can create a memory buffer that it can continue to
modify while sharing that buffer on a "read-only" basis with other processes.

File read/write hints
Write lifetime hints can be used to inform the kernel about the relative expected lifetime
of writes on a given inode or via a particular open file description. (See open(2) for an
explanation of open file descriptions.) In this context, the term "write lifetime" means
the expected time the data will live on media, before being overwritten or erased.

An application may use the different hint values specified below to separate writes into
different write classes, so that multiple users or applications running on a single storage
back-end can aggregate their I/O patterns in a consistent manner. However, there are no
functional semantics implied by these flags, and different 1/O classes can use the write
lifetime hints in arbitrary ways, so long as the hints are used consistently.

The following operations can be applied to the file descriptor, fd:

F GET_RW_HINT (uint64_t *; since Linux 4.13)
Returns the value of the read/write hint associated with the underlying inode re-
ferred to by fd.

F_SET_RW_HINT (uint64_t *; since Linux 4.13)
Sets the read/write hint value associated with the underlying inode referred to by
fd. This hint persists until either it is explicitly modified or the underlying
filesystem is unmounted.

F GET_FILE_RW_HINT (uint64_t *; since Linux 4.13)
Returns the value of the read/write hint associated with the open file description
referred to by fd.

F SET_FILE_RW_HINT (uint64_t *: since Linux 4.13)
Sets the read/write hint value associated with the open file description referred to
by fd.

If an open file description has not been assigned a read/write hint, then it shall use the
value assigned to the inode, if any.

The following read/write hints are valid since Linux 4.13:

RWH_WRITE_LIFE_NOT_SET
No specific hint has been set. This is the default value.

RWH_WRITE_LIFE_NONE
No specific write lifetime is associated with this file or inode.

Linux man-pages 6.8 2024-05-02 215

fentl(2) System Calls Manual fentl(2)

RWH_WRITE_LIFE_SHORT
Data written to this inode or via this open file description is expected to have a
short lifetime.

RWH_WRITE_LIFE_MEDIUM
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_SHORT.

RWH_WRITE_LIFE_LONG
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_MEDIUM.

RWH_WRITE_LIFE_EXTREME
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_LONG.

All the write-specific hints are relative to each other, and no individual absolute meaning
should be attributed to them.

RETURN VALUE
For a successful call, the return value depends on the operation:

F_DUPFD
The new file descriptor.

F GETFD
Value of file descriptor flags.

F GETFL
Value of file status flags.

F GETLEASE
Type of lease held on file descriptor.

F_ GETOWN
Value of file descriptor owner.

F GETSIG
Value of signal sent when read or write becomes possible, or zero for traditional
SIGIO behavior.

F_GETPIPE_SZ
F SETPIPE_SZ
The pipe capacity.

F_GET_SEALS
A bit mask identifying the seals that have been set for the inode referred to by
fd.

All other operations
Zero.

On error, =1 is returned, and errno is set to indicate the error.

ERRORS
EACCES or EAGAIN
Operation is prohibited by locks held by other processes.

Linux man-pages 6.8 2024-05-02 216

fentl(2) System Calls Manual fentl(2)

EAGAIN
The operation is prohibited because the file has been memory-mapped by an-
other process.

EBADF
fd is not an open file descriptor

EBADF
op is F_ SETLK or F_SETLKW and the file descriptor open mode doesn’t
match with the type of lock requested.

EBUSY
op is F_SETPIPE_SZ and the new pipe capacity specified in arg is smaller than
the amount of buffer space currently used to store data in the pipe.

EBUSY
op is F_ADD_SEALS, arg includes F_SEAL_WRITE, and there exists a
writable, shared mapping on the file referred to by fd.

EDEADLK
It was detected that the specified F_SETLKW operation would cause a dead-
lock.

EFAULT
lock is outside your accessible address space.

EINTR
op is F_ SETLKW or F_ OFD_SETLKW and the operation was interrupted by
a signal; see signal(7).

EINTR
op is F_GETLK, F_SETLK, F_ OFD_GETLK, or F_OFD_SETLK, and the
operation was interrupted by a signal before the lock was checked or acquired.
Most likely when locking a remote file (e.g., locking over NFS), but can some-
times happen locally.

EINVAL
The value specified in op is not recognized by this kernel.

EINVAL
op is F_ADD_SEALS and arg includes an unrecognized sealing bit.

EINVAL
op is F_ ADD_SEALS or F_GET_SEALS and the filesystem containing the in-
ode referred to by fd does not support sealing.

EINVAL
op is F_DUPFD and arg is negative or is greater than the maximum allowable
value (see the discussion of RLIMIT_NOFILE in getrlimit(2)).

EINVAL
op is F_SETSIG and arg is not an allowable signal number.

EINVAL
op is F OFD_SETLK, F_ OFD_SETLKW, or F_ OFD_GETLK, and |_pid
was not specified as zero.

Linux man-pages 6.8 2024-05-02 217

fentl(2) System Calls Manual fentl(2)

EMFILE
op is F_DUPFD and the per-process limit on the number of open file descriptors
has been reached.

ENOLCK
Too many segment locks open, lock table is full, or a remote locking protocol
failed (e.g., locking over NFS).

ENOTDIR
F_NOTIFY was specified in op, but fd does not refer to a directory.

EPERM
op is F_SETPIPE_SZ and the soft or hard user pipe limit has been reached; see
pipe(7).

EPERM

Attempted to clear the O_APPEND flag on a file that has the append-only at-
tribute set.

EPERM
op was F_ADD_SEALS, but fd was not open for writing or the current set of
seals on the file already includes F_SEAL_SEAL.

STANDARDS
POSIX.1-2008.

F GETOWN_EX, F SETOWN_EX, F SETPIPE_SZ, F GETPIPE_SZ, F_GET-
SIG, F_SETSIG, F_NOTIFY, F_GETLEASE, and F_SETLEASE are Linux-spe-
cific. (Define the _GNU_SOURCE macro to obtain these definitions.)

F OFD _SETLK, F_ OFD _SETLKW, and F_ OFD_GETLK are Linux-specific (and
one must define _GNU_SOURCE to obtain their definitions), but work is being done to
have them included in the next version of POSIX.1.

F_ADD_SEALS and F_GET_SEALS are Linux-specific.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

Only the operations F DUPFD, F GETFD, F SETFD, F_ GETFL, F _SETFL,
F GETLK, F_SETLK, and F_SETLKW are specified in POSIX.1-2001.

F GETOWN and F_SETOWN are specified in POSIX.1-2001. (To get their defini-
tions, define either _XOPEN_SOURCE with the value 500 or greater, or
_POSIX_C_SOURCE with the value 200809L or greater.)

F _DUPFD_CLOEXEC is specified in POSIX.1-2008. (To get this definition, define
_POSIX_C_SOURCE with the value 200809L or greater, or _XOPEN_SOURCE
with the value 700 or greater.)

NOTES
The errors returned by dup2(2) are different from those returned by F_DUPFD.

File locking
The original Linux fcntl() system call was not designed to handle large file offsets (in
the flock structure). Consequently, an fcntl64() system call was added in Linux 2.4.
The newer system call employs a different structure for file locking, flock64, and

Linux man-pages 6.8 2024-05-02 218

fentl(2) System Calls Manual fentl(2)

corresponding operations, F_ GETLK®64, F_SETLK®64, and F_SETLKW®64. However,
these details can be ignored by applications using glibc, whose fcntl() wrapper function
transparently employs the more recent system call where it is available.

Record locks
Since Linux 2.0, there is no interaction between the types of lock placed by flock(2) and
fentl().

Several systems have more fields in struct flock such as, for example, |_sysid (to identify
the machine where the lock is held). Clearly, |_pid alone is not going to be very useful
if the process holding the lock may live on a different machine; on Linux, while present
on some architectures (such as MIPS32), this field is not used.

The original Linux fcntl() system call was not designed to handle large file offsets (in
the flock structure). Consequently, an fcntl64() system call was added in Linux 2.4.
The newer system call employs a different structure for file locking, flock64, and corre-
sponding operations, F GETLKG64, F SETLK64, and F_SETLKW64. However,
these details can be ignored by applications using glibc, whose fcntl() wrapper function
transparently employs the more recent system call where it is available.

Record locking and NFS

Before Linux 3.12, if an NFSv4 client loses contact with the server for a period of time
(defined as more than 90 seconds with no communication), it might lose and regain a
lock without ever being aware of the fact. (The period of time after which contact is as-
sumed lost is known as the NFSv4 leasetime. On a Linux NFS server, this can be deter-
mined by looking at /proc/fs/nfsd/nfsv4leasetime, which expresses the period in seconds.
The default value for this file is 90.) This scenario potentially risks data corruption,
since another process might acquire a lock in the intervening period and perform file
1/0.

Since Linux 3.12, if an NFSv4 client loses contact with the server, any 1/0 to the file by
a process which "thinks" it holds a lock will fail until that process closes and reopens the
file. A kernel parameter, nfs.recover_lost_locks, can be set to 1 to obtain the pre-3.12
behavior, whereby the client will attempt to recover lost locks when contact is reestab-
lished with the server. Because of the attendant risk of data corruption, this parameter
defaults to O (disabled).

BUGS
F SETFL
It is not possible to use F_SETFL to change the state of the O_DSYNC and O_SYNC
flags. Attempts to change the state of these flags are silently ignored.

F_ GETOWN

A limitation of the Linux system call conventions on some architectures (notably i386)
means that if a (negative) process group ID to be returned by F GETOWN falls in the
range —1 to —4095, then the return value is wrongly interpreted by glibc as an error in
the system call; that is, the return value of fcntl() will be -1, and errno will contain the
(positive) process group ID. The Linux-specific F_GETOWN_EX operation avoids
this problem. Since glibc 2.11, glibc makes the kernel F_GETOWN problem invisible
by implementing F_GETOWN using F_ GETOWN_EX.

Linux man-pages 6.8 2024-05-02 219

fentl(2) System Calls Manual fentl(2)

F SETOWN
In Linux 2.4 and earlier, there is bug that can occur when an unprivileged process uses
F_SETOWN to specify the owner of a socket file descriptor as a process (group) other
than the caller. In this case, fcntl() can return —1 with errno set to EPERM, even when
the owner process (group) is one that the caller has permission to send signals to. De-
spite this error return, the file descriptor owner is set, and signals will be sent to the
owner.

Deadlock detection

The deadlock-detection algorithm employed by the kernel when dealing with
F_SETLKW requests can yield both false negatives (failures to detect deadlocks, leav-
ing a set of deadlocked processes blocked indefinitely) and false positives (EDEADLK
errors when there is no deadlock). For example, the kernel limits the lock depth of its
dependency search to 10 steps, meaning that circular deadlock chains that exceed that
size will not be detected. In addition, the kernel may falsely indicate a deadlock when
two or more processes created using the clone(2) CLONE_FILES flag place locks that
appear (to the kernel) to conflict.

Mandatory locking
The Linux implementation of mandatory locking is subject to race conditions which ren-
der it unreliable: a write(2) call that overlaps with a lock may modify data after the
mandatory lock is acquired; a read(2) call that overlaps with a lock may detect changes
to data that were made only after a write lock was acquired. Similar races exist between
mandatory locks and mmap(2). It is therefore inadvisable to rely on mandatory locking.

SEE ALSO
dup2(2), flock(2), open(2), socket(2), lockf(3), capabilities(7), feature_test _macros(7),
Islocks(8)
locks.txt, mandatory—locking.txt, and dnotify.txt in the Linux kernel source directory

Documentation/filesystems/ (on older kernels, these files are directly under the Docu-
mentation/ directory, and mandatory—locking.txt is called mandatory.txt)

Linux man-pages 6.8 2024-05-02 220

flock(2) System Calls Manual flock(2)

NAME

flock — apply or remove an advisory lock on an open file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/file.h>
int flock(int fd, int op);

DESCRIPTION
Apply or remove an advisory lock on the open file specified by fd. The argument op is
one of the following:

LOCK_SH
Place a shared lock. More than one process may hold a shared lock for
a given file at a given time.

LOCK_EX
Place an exclusive lock. Only one process may hold an exclusive lock
for a given file at a given time.

LOCK_UN
Remove an existing lock held by this process.

A call to flock() may block if an incompatible lock is held by another process. To make
a nonblocking request, include LOCK_NB (by ORing) with any of the above opera-
tions.

A single file may not simultaneously have both shared and exclusive locks.

Locks created by flock() are associated with an open file description (see open(2)). This
means that duplicate file descriptors (created by, for example, fork(2) or dup(2)) refer to
the same lock, and this lock may be modified or released using any of these file descrip-
tors. Furthermore, the lock is released either by an explicit LOCK_UN operation on
any of these duplicate file descriptors, or when all such file descriptors have been closed.

If a process uses open(2) (or similar) to obtain more than one file descriptor for the same
file, these file descriptors are treated independently by flock(). An attempt to lock the
file using one of these file descriptors may be denied by a lock that the calling process
has already placed via another file descriptor.

A process may hold only one type of lock (shared or exclusive) on a file. Subsequent
flock() calls on an already locked file will convert an existing lock to the new lock
mode.

Locks created by flock() are preserved across an execve(2).

A shared or exclusive lock can be placed on a file regardless of the mode in which the
file was opened.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

Linux man-pages 6.8 2024-05-02 221

flock(2) System Calls Manual flock(2)

ERRORS
EBADF
fd is not an open file descriptor.

EINTR
While waiting to acquire a lock, the call was interrupted by delivery of a signal
caught by a handler; see signal(7).

EINVAL
op is invalid.

ENOLCK
The kernel ran out of memory for allocating lock records.

EWOULDBLOCK
The file is locked and the LOCK _NB flag was selected.

VERSIONS
Since Linux 2.0, flock() is implemented as a system call in its own right rather than be-
ing emulated in the GNU C library as a call to fcntl(2). With this implementation, there
is no interaction between the types of lock placed by flock() and fcntl(2), and flock()
does not detect deadlock. (Note, however, that on some systems, such as the modern
BSDs, flock() and fcntl(2) locks do interact with one another.)

CIFS details
Up to Linux 5.4, flock() is not propagated over SMB. A file with such locks will not ap-
pear locked for remote clients.

Since Linux 5.5, flock() locks are emulated with SMB byte-range locks on the entire
file. Similarly to NFS, this means that fcntl(2) and flock() locks interact with one an-
other. Another important side-effect is that the locks are not advisory anymore: any 10
on a locked file will always fail with EACCES when done from a separate file descrip-
tor. This difference originates from the design of locks in the SMB protocol, which pro-
vides mandatory locking semantics.

Remote and mandatory locking semantics may vary with SMB protocol, mount options
and server type. See mount.cifs(8) for additional information.

STANDARDS
BSD.

HISTORY
4.4BSD (the flock() call first appeared in 4.2BSD). A version of flock(), possibly im-
plemented in terms of fcntl(2), appears on most UNIX systems.

NFS details
Up to Linux 2.6.11, flock() does not lock files over NFS (i.e., the scope of locks was
limited to the local system). Instead, one could use fcntl(2) byte-range locking, which
does work over NFS, given a sufficiently recent version of Linux and a server which
supports locking.

Since Linux 2.6.12, NFS clients support flock() locks by emulating them as fcntl(2)
byte-range locks on the entire file. This means that fcntl(2) and flock() locks do interact
with one another over NFS. It also means that in order to place an exclusive lock, the
file must be opened for writing.

Linux man-pages 6.8 2024-05-02 222

flock(2) System Calls Manual flock(2)

Since Linux 2.6.37, the kernel supports a compatibility mode that allows flock() locks
(and also fcntl(2) byte region locks) to be treated as local; see the discussion of the lo-
cal_lock option in nfs(5)

NOTES

flock() places advisory locks only; given suitable permissions on a file, a process is free
to ignore the use of flock() and perform 1/0O on the file.

flock() and fcntl(2) locks have different semantics with respect to forked processes and
dup(2). On systems that implement flock() using fcntl(2), the semantics of flock() will
be different from those described in this manual page.

Converting a lock (shared to exclusive, or vice versa) is not guaranteed to be atomic: the
existing lock is first removed, and then a new lock is established. Between these two
steps, a pending lock request by another process may be granted, with the result that the
conversion either blocks, or fails if LOCK _NB was specified. (This is the original BSD
behavior, and occurs on many other implementations.)

SEE ALSO
flock(1), close(2), dup(2), execve(2), fcntl(2), fork(2), open(2), lockf(3), Islocks(8)

Documentation/filesystems/locks.txt in the Linux kernel source tree (Documenta-
tion/locks.txt in older kernels)

Linux man-pages 6.8 2024-05-02 223

fork(2)

System Calls Manual fork(2)

NAME
fork — create a child process

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS

#include <unistd.h>
pid_t fork(void);

DESCRIPTION
fork() creates a new process by duplicating the calling process. The new process is re-
ferred to as the child process. The calling process is referred to as the parent process.

The child process and the parent process run in separate memory spaces. At the time of
fork() both memory spaces have the same content. Memory writes, file mappings
(mmap(2)), and unmappings (munmap(2)) performed by one of the processes do not
affect the other.

The child process is an exact duplicate of the parent process except for the following
points:

The child has its own unique process 1D, and this PID does not match the ID of any
existing process group (setpgid(2)) or session.

The child’s parent process ID is the same as the parent’s process ID.
The child does not inherit its parent’s memory locks (mlock(2), mlockall(2)).

Process resource utilizations (getrusage(2)) and CPU time counters (times(2)) are
reset to zero in the child.

The child’s set of pending signals is initially empty (sigpending(2)).

The child does not inherit semaphore adjustments from its parent (semop(2)).

The child does not inherit process-associated record locks from its parent (fcntl(2)).

(On the other hand, it does inherit fcntl(2) open file description locks and flock(2)
locks from its parent.)

The child does not inherit timers from its parent (setitimer(2), alarm(2),
timer_create(2)).

The child does not inherit outstanding asynchronous 1/O operations from its parent
(aio_read(3), aio_write(3)), nor does it inherit any asynchronous I/O contexts from
its parent (see io_setup(2)).

The process attributes in the preceding list are all specified in POSIX.1. The parent and
child also differ with respect to the following Linux-specific process attributes:

The child does not inherit directory change notifications (dnotify) from its parent
(see the description of F_NOTIFY in fcntl(2)).

The prctl(2) PR_SET_PDEATHSIG setting is reset so that the child does not re-
ceive a signal when its parent terminates.

The default timer slack value is set to the parent’s current timer slack value. See the
description of PR_SET_TIMERSLACK in prctl(2).

Linux man-pages 6.8 2024-05-02 224

fork(2)

System Calls Manual fork(2)

Memory mappings that have been marked with the madvise(2) MADV_DONT-
FORK flag are not inherited across a fork().

Memory in address ranges that have been marked with the madvise(2)
MADV_WIPEONFORK flag is zeroed in the child after a fork(). (The
MADV_WIPEONFORK setting remains in place for those address ranges in the
child.)

The termination signal of the child is always SIGCHLD (see clone(2)).

The port access permission bits set by ioperm(2) are not inherited by the child; the
child must turn on any bits that it requires using ioperm(2).

Note the following further points:

The child process is created with a single thread—the one that called fork(). The
entire virtual address space of the parent is replicated in the child, including the
states of mutexes, condition variables, and other pthreads objects; the use of
pthread_atfork(3) may be helpful for dealing with problems that this can cause.

After a fork() in a multithreaded program, the child can safely call only async-sig-
nal-safe functions (see signal-safety(7)) until such time as it calls execve(2).

The child inherits copies of the parent’s set of open file descriptors. Each file de-
scriptor in the child refers to the same open file description (see open(2)) as the cor-
responding file descriptor in the parent. This means that the two file descriptors
share open file status flags, file offset, and signal-driven 1/O attributes (see the de-
scription of F_SETOWN and F_SETSIG in fcntl(2)).

The child inherits copies of the parent’s set of open message queue descriptors (see
mq_overview(7)). Each file descriptor in the child refers to the same open message
queue description as the corresponding file descriptor in the parent. This means that
the two file descriptors share the same flags (mq_flags).

The child inherits copies of the parent’s set of open directory streams (see
opendir(3)). POSIX.1 says that the corresponding directory streams in the parent
and child may share the directory stream positioning; on Linux/glibc they do not.

RETURN VALUE
On success, the PID of the child process is returned in the parent, and 0 is returned in
the child. On failure, —1 is returned in the parent, no child process is created, and errno
is set to indicate the error.

ERRORS
EAGAIN

A system-imposed limit on the number of threads was encountered. There are a
number of limits that may trigger this error:

« the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which limits
the number of processes and threads for a real user 1D, was reached,;

» the kernel’s system-wide limit on the number of processes and threads,
Iproc/sys/kernel/threads—max, was reached (see proc(5));

» the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see
proc(5)); or

Linux man-pages 6.8 2024-05-02 225

fork(2) System Calls Manual fork(2)

» the PID limit (pids.max) imposed by the cgroup "process number” (PIDs)
controller was reached.

EAGAIN
The caller is operating under the SCHED_DEADLINE scheduling policy and
does not have the reset-on-fork flag set. See sched(7).

ENOMEM
fork() failed to allocate the necessary kernel structures because memory is tight.

ENOMEM
An attempt was made to create a child process in a PID namespace whose "init"
process has terminated. See pid_namespaces(7).

ENOSYS
fork() is not supported on this platform (for example, hardware without a Mem-
ory-Management Unit).

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be seen
only during a trace.)

VERSIONS
C library/kernel differences
Since glibc 2.3.3, rather than invoking the kernel’s fork() system call, the glibc fork()
wrapper that is provided as part of the NPTL threading implementation invokes clone(2)
with flags that provide the same effect as the traditional system call. (A call to fork() is
equivalent to a call to clone(2) specifying flags as just SIGCHLD.) The glibc wrapper
invokes any fork handlers that have been established using pthread_atfork(3).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
Under Linux, fork() is implemented using copy-on-write pages, so the only penalty that
it incurs is the time and memory required to duplicate the parent’s page tables, and to
create a unique task structure for the child.

EXAMPLES
See pipe(2) and wait(2) for more examples.

#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)

Linux man-pages 6.8 2024-05-02 226

fork(2) System Calls Manual fork(2)

if (signal(SIGCHLD, SIG_IGN) == SIG_ERR) {
perror(‘'signal™);
exit(EXIT_FAILURE);

+

pid = fork(Q);

switch (pid) {

case -1:
perror("*fork™);
exit(EXIT_FAILURE);

case O:
puts("'Child exiting.");
exit(EXIT_SUCCESS);

default:
printf("'Child 1s PID %jd\n", (intmax_t) pid);
puts("'Parent exiting.");
exit(EXIT_SUCCESS);

¥

+

SEE ALSO
clone(2), execve(2), exit(2), setrlimit(2), unshare(2), vfork(2), wait(2), daemon(3),
pthread_atfork(3), capabilities(7), credentials(7)

Linux man-pages 6.8 2024-05-02 227

fsync(2) System Calls Manual fsync(2)

NAME

fsync, fdatasync — synchronize a file’s in-core state with storage device

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <unistd.h>
int fsync(int fd);
int fdatasync(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fsync():
glibc 2.16 and later:
No feature test macros need be defined
glibc up to and including 2.15:
_BSD_SOURCE || _XOPEN_SOURCE
|| /* Since glibc 2.8: */ _POSIX_C_SOURCE >=200112L

fdatasync():
_POSIX_C_SOURCE >=199309L || _XOPEN_SOURCE >= 500

DESCRIPTION

fsync() transfers (“flushes™) all modified in-core data of (i.e., modified buffer cache
pages for) the file referred to by the file descriptor fd to the disk device (or other perma-
nent storage device) so that all changed information can be retrieved even if the system
crashes or is rebooted. This includes writing through or flushing a disk cache if present.
The call blocks until the device reports that the transfer has completed.

As well as flushing the file data, fsync() also flushes the metadata information associated
with the file (see inode(7)).

Calling fsync() does not necessarily ensure that the entry in the directory containing the
file has also reached disk. For that an explicit fsync() on a file descriptor for the direc-
tory is also needed.

fdatasync() is similar to fsync(), but does not flush modified metadata unless that meta-
data is needed in order to allow a subsequent data retrieval to be correctly handled. For
example, changes to st_atime or st_ mtime (respectively, time of last access and time of
last modification; see inode(7)) do not require flushing because they are not necessary
for a subsequent data read to be handled correctly. On the other hand, a change to the
file size (st_size, as made by say ftruncate(2)), would require a metadata flush.

The aim of fdatasync() is to reduce disk activity for applications that do not require all
metadata to be synchronized with the disk.

RETURN VALUE

On success, these system calls return zero. On error, —1 is returned, and errno is set to
indicate the error.

ERRORS

EBADF
fd is not a valid open file descriptor.

Linux man-pages 6.8 2024-05-02 228

fsync(2) System Calls Manual fsync(2)

EINTR
The function was interrupted by a signal; see signal(7).

EIO An error occurred during synchronization. This error may relate to data written
to some other file descriptor on the same file. Since Linux 4.13, errors from
write-back will be reported to all file descriptors that might have written the data
which triggered the error. Some filesystems (e.g., NFS) keep close track of
which data came through which file descriptor, and give more precise reporting.
Other filesystems (e.g., most local filesystems) will report errors to all file de-
scriptors that were open on the file when the error was recorded.

ENOSPC
Disk space was exhausted while synchronizing.

EROFS

EINVAL
fd is bound to a special file (e.g., a pipe, FIFO, or socket) which does not sup-
port synchronization.

ENOSPC

EDQUOT
fd is bound to a file on NFS or another filesystem which does not allocate space
at the time of a write(2) system call, and some previous write failed due to insuf-
ficient storage space.

VERSIONS
On POSIX systems on which fdatasync() is available, POSIX SYNCHRO-
NIZED_IO is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.2BSD.

In Linux 2.2 and earlier, fdatasync() is equivalent to fsync(), and so has no performance
advantage.

The fsync() implementations in older kernels and lesser used filesystems do not know
how to flush disk caches. In these cases disk caches need to be disabled using hd-
parm(8) or sdparm(8) to guarantee safe operation.

Under AT&T UNIX System V Release 4 fd needs to be opened for writing. This is by
itself incompatible with the original BSD interface and forbidden by POSIX, but never-
theless survives in HP-UX and AlX.

SEE ALSO
sync(1), bdflush(2), open(2), posix_fadvise(2), pwritev(2), sync(2), sync_file_range(2),
fflush(3), fileno(3), hdparm(8), mount(8)

Linux man-pages 6.8 2024-05-02 229

futex(2) System Calls Manual futex(2)

NAME

futex — fast user-space locking
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout, /* or: uint32_t val2 */
uint32_t *uaddr2, uint32_t val3);

Note: glibc provides no wrapper for futex(), necessitating the use of syscall(2).

DESCRIPTION

The futex() system call provides a method for waiting until a certain condition becomes
true. It is typically used as a blocking construct in the context of shared-memory syn-
chronization. When using futexes, the majority of the synchronization operations are
performed in user space. A user-space program employs the futex() system call only
when it is likely that the program has to block for a longer time until the condition be-
comes true. Other futex() operations can be used to wake any processes or threads wait-
ing for a particular condition.

A futex is a 32-bit value—referred to below as a futex word—whose address is supplied
to the futex() system call. (Futexes are 32 bits in size on all platforms, including 64-bit
systems.) All futex operations are governed by this value. In order to share a futex be-
tween processes, the futex is placed in a region of shared memory, created using (for ex-
ample) mmap(2) or shmat(2). (Thus, the futex word may have different virtual ad-
dresses in different processes, but these addresses all refer to the same location in physi-
cal memory.) In a multithreaded program, it is sufficient to place the futex word in a
global variable shared by all threads.

When executing a futex operation that requests to block a thread, the kernel will block
only if the futex word has the value that the calling thread supplied (as one of the argu-
ments of the futex() call) as the expected value of the futex word. The loading of the fu-
tex word’s value, the comparison of that value with the expected value, and the actual
blocking will happen atomically and will be totally ordered with respect to concurrent
operations performed by other threads on the same futex word. Thus, the futex word is
used to connect the synchronization in user space with the implementation of blocking
by the kernel. Analogously to an atomic compare-and-exchange operation that poten-
tially changes shared memory, blocking via a futex is an atomic compare-and-block op-
eration.

One use of futexes is for implementing locks. The state of the lock (i.e., acquired or not
acquired) can be represented as an atomically accessed flag in shared memory. In the
uncontended case, a thread can access or modify the lock state with atomic instructions,
for example atomically changing it from not acquired to acquired using an atomic com-
pare-and-exchange instruction. (Such instructions are performed entirely in user mode,
and the kernel maintains no information about the lock state.) On the other hand, a
thread may be unable to acquire a lock because it is already acquired by another thread.

Linux man-pages 6.8 2024-05-02 230

futex(2) System Calls Manual futex(2)

It then may pass the lock’s flag as a futex word and the value representing the acquired
state as the expected value to a futex() wait operation. This futex() operation will block
if and only if the lock is still acquired (i.e., the value in the futex word still matches the
"acquired state™). When releasing the lock, a thread has to first reset the lock state to not
acquired and then execute a futex operation that wakes threads blocked on the lock flag
used as a futex word (this can be further optimized to avoid unnecessary wake-ups). See
futex(7) for more detail on how to use futexes.

Besides the basic wait and wake-up futex functionality, there are further futex operations
aimed at supporting more complex use cases.

Note that no explicit initialization or destruction is necessary to use futexes; the kernel
maintains a futex (i.e., the kernel-internal implementation artifact) only while operations
such as FUTEX_WAIT, described below, are being performed on a particular futex
word.

Arguments
The uaddr argument points to the futex word. On all platforms, futexes are four-byte in-
tegers that must be aligned on a four-byte boundary. The operation to perform on the
futex is specified in the futex_op argument; val is a value whose meaning and purpose
depends on futex_op.

The remaining arguments (timeout, uaddr2, and val3) are required only for certain of
the futex operations described below. Where one of these arguments is not required, it is
ignored.

For several blocking operations, the timeout argument is a pointer to a timespec struc-
ture that specifies a timeout for the operation. However, notwithstanding the prototype
shown above, for some operations, the least significant four bytes of this argument are
instead used as an integer whose meaning is determined by the operation. For these op-
erations, the kernel casts the timeout value first to unsigned long, then to uint32_t, and
in the remainder of this page, this argument is referred to as val2 when interpreted in
this fashion.

Where it is required, the uaddr2 argument is a pointer to a second futex word that is em-
ployed by the operation.

The interpretation of the final integer argument, val3, depends on the operation.

Futex operations
The futex_op argument consists of two parts: a command that specifies the operation to
be performed, bitwise ORed with zero or more options that modify the behaviour of the
operation. The options that may be included in futex_op are as follows:

FUTEX_PRIVATE_FLAG (since Linux 2.6.22)
This option bit can be employed with all futex operations. It tells the kernel that
the futex is process-private and not shared with another process (i.e., it is being
used for synchronization only between threads of the same process). This allows
the kernel to make some additional performance optimizations.

As a convenience, <linux/futex.n> defines a set of constants with the suffix
_PRIVATE that are equivalents of all of the operations listed below, but with the
FUTEX_PRIVATE_FLAG ORed into the constant value. Thus, there are FU-
TEX_WAIT_PRIVATE, FUTEX WAKE_PRIVATE, and so on.

Linux man-pages 6.8 2024-05-02 231

futex(2) System Calls Manual futex(2)

FUTEX_CLOCK_REALTIME (since Linux 2.6.28)
This option bit can be employed only with the FUTEX _WAIT_BITSET, FU-
TEX_WAIT_REQUEUE_PI, (since Linux 4.5) FUTEX_WAIT, and (since
Linux 5.14) FUTEX_LOCK_PI2 operations.

If this option is set, the kernel measures the timeout against the CLOCK_RE-
ALTIME clock.

If this option is not set, the kernel measures the timeout against the
CLOCK_MONOTONIC clock.

The operation specified in futex_op is one of the following:

FUTEX_WAIT (since Linux 2.6.0)

This operation tests that the value at the futex word pointed to by the address
uaddr still contains the expected value val, and if so, then sleeps waiting for a
FUTEX_WAKE operation on the futex word. The load of the value of the futex
word is an atomic memory access (i.e., using atomic machine instructions of the
respective architecture). This load, the comparison with the expected value, and
starting to sleep are performed atomically and totally ordered with respect to
other futex operations on the same futex word. If the thread starts to sleep, it is
considered a waiter on this futex word. If the futex value does not match val,
then the call fails immediately with the error EAGAIN.

The purpose of the comparison with the expected value is to prevent lost wake-
ups. If another thread changed the value of the futex word after the calling
thread decided to block based on the prior value, and if the other thread executed
a FUTEX_WAKE operation (or similar wake-up) after the value change and be-
fore this FUTEX_WAIT operation, then the calling thread will observe the
value change and will not start to sleep.

If the timeout is not NULL, the structure it points to specifies a timeout for the
wait. (This interval will be rounded up to the system clock granularity, and is
guaranteed not to expire early.) The timeout is by default measured according to
the CLOCK_MONOTONIC clock, but, since Linux 4.5, the CLOCK_REAL-
TIME clock can be selected by specifying FUTEX _CLOCK_REALTIME in
futex_op. If timeout is NULL, the call blocks indefinitely.

Note: for FUTEX_WAIT, timeout is interpreted as a relative value. This differs
from other futex operations, where timeout is interpreted as an absolute value.
To obtain the equivalent of FUTEX_WAIT with an absolute timeout, employ
FUTEX WAIT BITSET with val3 specified as FUTEX BIT-
SET_MATCH_ANY.

The arguments uaddr2 and val3 are ignored.

FUTEX_WAKE (since Linux 2.6.0)
This operation wakes at most val of the waiters that are waiting (e.g., inside FU-
TEX_WAIT) on the futex word at the address uaddr. Most commonly, val is
specified as either 1 (wake up a single waiter) or INT_MAX (wake up all wait-
ers). No guarantee is provided about which waiters are awoken (e.g., a waiter
with a higher scheduling priority is not guaranteed to be awoken in preference to
a waiter with a lower priority).

Linux man-pages 6.8 2024-05-02 232

futex(2) System Calls Manual futex(2)

The arguments timeout, uaddr2, and val3 are ignored.

FUTEX_FD (from Linux 2.6.0 up to and including Linux 2.6.25)
This operation creates a file descriptor that is associated with the futex at uaddr.
The caller must close the returned file descriptor after use. When another
process or thread performs a FUTEX_WAKE on the futex word, the file de-
scriptor indicates as being readable with select(2), poll(2), and epoll(7)

The file descriptor can be used to obtain asynchronous notifications: if val is
nonzero, then, when another process or thread executes a FUTEX_ WAKE, the
caller will receive the signal number that was passed in val.

The arguments timeout, uaddr2, and val3 are ignored.

Because it was inherently racy, FUTEX FD has been removed from Linux
2.6.26 onward.

FUTEX_REQUEUE (since Linux 2.6.0)
This operation performs the same task as FUTEX _CMP_REQUEUE (see be-
low), except that no check is made using the value in val3. (The argument val3
is ignored.)

FUTEX_CMP_REQUEUE (since Linux 2.6.7)

This operation first checks whether the location uaddr still contains the value
val3. If not, the operation fails with the error EAGAIN. Otherwise, the opera-
tion wakes up a maximum of val waiters that are waiting on the futex at uaddr.
If there are more than val waiters, then the remaining waiters are removed from
the wait queue of the source futex at uaddr and added to the wait queue of the
target futex at uaddr2. The val2 argument specifies an upper limit on the num-
ber of waiters that are requeued to the futex at uaddr2.

The load from uaddr is an atomic memory access (i.e., using atomic machine in-
structions of the respective architecture). This load, the comparison with val3,
and the requeueing of any waiters are performed atomically and totally ordered
with respect to other operations on the same futex word.

Typical values to specify for val are 0 or 1. (Specifying INT_MAX is not use-
ful, because it would make the FUTEX_CMP_REQUEUE operation equivalent
to FUTEX_WAKE.) The limit value specified via val2 is typically either 1 or
INT_MAX. (Specifying the argument as 0 is not useful, because it would make
the FUTEX_CMP_REQUEUE operation equivalent to FUTEX_WAIT.)

The FUTEX_CMP_REQUEUE operation was added as a replacement for the
earlier FUTEX_REQUEUE. The difference is that the check of the value at
uaddr can be used to ensure that requeueing happens only under certain condi-
tions, which allows race conditions to be avoided in certain use cases.

Both FUTEX_REQUEUE and FUTEX_CMP_REQUEUE can be used to
avoid "thundering herd" wake-ups that could occur when using FUTEX _WAKE
in cases where all of the waiters that are woken need to acquire another futex.
Consider the following scenario, where multiple waiter threads are waiting on B,
a wait queue implemented using a futex:

lock(A)
while (Icheck value(V)) {

Linux man-pages 6.8 2024-05-02 233

futex(2) System Calls Manual futex(2)

unlock(A);
block on(B);
lock(A);

};

unlock(A);

If a waker thread used FUTEX_WAKE, then all waiters waiting on B would be
woken up, and they would all try to acquire lock A. However, waking all of the
threads in this manner would be pointless because all except one of the threads
would immediately block on lock A again. By contrast, a requeue operation
wakes just one waiter and moves the other waiters to lock A, and when the
woken waiter unlocks A then the next waiter can proceed.

FUTEX_WAKE_OP (since Linux 2.6.14)

This operation was added to support some user-space use cases where more than
one futex must be handled at the same time. The most notable example is the
implementation of pthread_cond_signal(3), which requires operations on two fu-
texes, the one used to implement the mutex and the one used in the implementa-
tion of the wait queue associated with the condition variable. FU-
TEX_WAKE_OP allows such cases to be implemented without leading to high
rates of contention and context switching.

The FUTEX_ _WAKE_OP operation is equivalent to executing the following
code atomically and totally ordered with respect to other futex operations on any
of the two supplied futex words:

uint32_t oldval = *(uint32_t *) uaddr2;
*(uint32_t *) uaddr2 = oldval op oparg;
futex(uaddr, FUTEX WAKE, val, 0, 0, 0);
if (oldval cmp cmparg)

futex(uaddr2, FUTEX WAKE, val2, 0, 0, 0);

In other words, FUTEX_WAKE_OP does the following:

» saves the original value of the futex word at uaddr2 and performs an opera-
tion to modify the value of the futex at uaddr2; this is an atomic read-mod-
ify-write memory access (i.e., using atomic machine instructions of the re-
spective architecture)

» wakes up a maximum of val waiters on the futex for the futex word at uaddr;
and

» dependent on the results of a test of the original value of the futex word at
uaddr2, wakes up a maximum of val2 waiters on the futex for the futex word
at uaddr2.

The operation and comparison that are to be performed are encoded in the bits of
the argument val3. Pictorially, the encoding is:

o S +
lop lcmp] oparg | cmparg |
O S +

4 4 12 12 <== # of bits

Linux man-pages 6.8 2024-05-02 234

futex(2) System Calls Manual futex(2)

Expressed in code, the encoding is:

#define FUTEX OP(op, oparg, cmp, cmparg) \
(((op & OxF) << 28) | \
((cmp & OxF) << 24) | \
((oparg & Oxfff) << 12) | \
(cmparg & Oxfff))

In the above, op and cmp are each one of the codes listed below. The oparg and
cmparg components are literal numeric values, except as noted below.

The op component has one of the following values:

FUTEX_OP_SET 0 /* uaddr2 = oparg; */

FUTEX_OP_ADD 1 /* uvaddr2 += oparg; */
FUTEX_OP_OR 2 /* uaddr2 |= oparg; */
FUTEX_OP_ANDN 3 /* uaddr2 &= ~oparg; */
FUTEX_OP_XOR 4 /* uaddr2 "= oparg; */

In addition, bitwise ORing the following value into op causes (1 << oparg) to be
used as the operand:

FUTEX _OP_ARG_SHIFT 8 /* Use (1 << oparg) as operand */
The cmp field is one of the following:

FUTEX_OP_CMP_EQ
FUTEX_OP_CMP_NE
FUTEX_OP_CMP_LT
FUTEX_OP_CMP_LE
FUTEX_OP_CMP_GT
FUTEX_OP_CMP_GE

The return value of FUTEX_WAKE_OP is the sum of the number of waiters
woken on the futex uaddr plus the number of waiters woken on the futex
uaddr2.

FUTEX_WAIT_BITSET (since Linux 2.6.25)
This operation is like FUTEX_WAIT except that val3 is used to provide a 32-bit
bit mask to the kernel. This bit mask, in which at least one bit must be set, is
stored in the kernel-internal state of the waiter. See the description of FU-
TEX_WAKE_BITSET for further details.

If timeout is not NULL, the structure it points to specifies an absolute timeout
for the wait operation. If timeout is NULL, the operation can block indefinitely.

/* 1t (oldval == cmparg) wake */
/* if (oldval !'= cmparg) wake */
/* 1Tt (oldval < cmparg) wake */
/* it (oldval <= cmparg) wake */
/> it (oldval > cmparg) wake */
/* 1t (oldval >= cmparg) wake */

abrhwNEFO

The uaddr2 argument is ignored.

FUTEX_WAKE_BITSET (since Linux 2.6.25)
This operation is the same as FUTEX_ WAKE except that the val3 argument is
used to provide a 32-bit bit mask to the kernel. This bit mask, in which at least
one bit must be set, is used to select which waiters should be woken up. The se-
lection is done by a bitwise AND of the "wake" bit mask (i.e., the value in val3)
and the bit mask which is stored in the kernel-internal state of the waiter (the
"wait" bit mask that is set using FUTEX_WAIT_BITSET). All of the waiters
for which the result of the AND is nonzero are woken up; the remaining waiters

Linux man-pages 6.8 2024-05-02 235

futex(2) System Calls Manual futex(2)

are left sleeping.

The effect of FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET is to al-
low selective wake-ups among multiple waiters that are blocked on the same fu-
tex. However, note that, depending on the use case, employing this bit-mask
multiplexing feature on a futex can be less efficient than simply using multiple
futexes, because employing bit-mask multiplexing requires the kernel to check
all waiters on a futex, including those that are not interested in being woken up
(i.e., they do not have the relevant bit set in their "wait™ bit mask).

The constant FUTEX_BITSET_MATCH_ANY, which corresponds to all 32
bits set in the bit mask, can be used as the val3 argument for FU-
TEX_WAIT BITSET and FUTEX WAKE_BITSET. Other than differences
in the handling of the timeout argument, the FUTEX_WAIT operation is equiv-
alent to FUTEX WAIT BITSET with val3 specified as FUTEX BIT-
SET_MATCH_ANY; that is, allow a wake-up by any waker. The FU-
TEX_WAKE operation is equivalent to FUTEX WAKE_BITSET with val3
specified as FUTEX_BITSET_MATCH_ANY:; that is, wake up any waiter(s).

The uaddr2 and timeout arguments are ignored.

Priority-inheritance futexes
Linux supports priority-inheritance (PI) futexes in order to handle priority-inversion
problems that can be encountered with normal futex locks. Priority inversion is the
problem that occurs when a high-priority task is blocked waiting to acquire a lock held
by a low-priority task, while tasks at an intermediate priority continuously preempt the
low-priority task from the CPU. Consequently, the low-priority task makes no progress
toward releasing the lock, and the high-priority task remains blocked.

Priority inheritance is a mechanism for dealing with the priority-inversion problem.
With this mechanism, when a high-priority task becomes blocked by a lock held by a
low-priority task, the priority of the low-priority task is temporarily raised to that of the
high-priority task, so that it is not preempted by any intermediate level tasks, and can
thus make progress toward releasing the lock. To be effective, priority inheritance must
be transitive, meaning that if a high-priority task blocks on a lock held by a lower-prior-
ity task that is itself blocked by a lock held by another intermediate-priority task (and so
on, for chains of arbitrary length), then both of those tasks (or more generally, all of the
tasks in a lock chain) have their priorities raised to be the same as the high-priority task.

From a user-space perspective, what makes a futex Pl-aware is a policy agreement (de-
scribed below) between user space and the kernel about the value of the futex word, cou-
pled with the use of the PI-futex operations described below. (Unlike the other futex op-
erations described above, the PI-futex operations are designed for the implementation of
very specific IPC mechanisms.)

The PIl-futex operations described below differ from the other futex operations in that
they impose policy on the use of the value of the futex word:

» If the lock is not acquired, the futex word’s value shall be 0.

* If the lock is acquired, the futex word’s value shall be the thread ID (TID; see
gettid(2)) of the owning thread.

Linux man-pages 6.8 2024-05-02 236

futex(2) System Calls Manual futex(2)

» If the lock is owned and there are threads contending for the lock, then the FU-
TEX_WAITERS bit shall be set in the futex word’s value; in other words, this value
is:

FUTEX_WAITERS | TID

(Note that is invalid for a PI futex word to have no owner and FUTEX_WAITERS
set.)

With this policy in place, a user-space application can acquire an unacquired lock or re-
lease a lock using atomic instructions executed in user mode (e.g., a compare-and-swap
operation such as cmpxchg on the x86 architecture). Acquiring a lock simply consists of
using compare-and-swap to atomically set the futex word’s value to the caller’s TID if
its previous value was 0. Releasing a lock requires using compare-and-swap to set the
futex word’s value to O if the previous value was the expected TID.

If a futex is already acquired (i.e., has a nonzero value), waiters must employ the FU-
TEX_LOCK PI or FUTEX LOCK_PI2 operations to acquire the lock. If other
threads are waiting for the lock, then the FUTEX WAITERS bit is set in the futex
value; in this case, the lock owner must employ the FUTEX_UNLOCK_PI operation to
release the lock.

In the cases where callers are forced into the kernel (i.e., required to perform a futex()
call), they then deal directly with a so-called RT-mutex, a kernel locking mechanism
which implements the required priority-inheritance semantics. After the RT-mutex is
acquired, the futex value is updated accordingly, before the calling thread returns to user
space.

It is important to note that the kernel will update the futex word’s value prior to return-
ing to user space. (This prevents the possibility of the futex word’s value ending up in
an invalid state, such as having an owner but the value being 0, or having waiters but not
having the FUTEX_WAITERS bit set.)

If a futex has an associated RT-mutex in the kernel (i.e., there are blocked waiters) and
the owner of the futex/RT-mutex dies unexpectedly, then the kernel cleans up the
RT-mutex and hands it over to the next waiter. This in turn requires that the user-space
value is updated accordingly. To indicate that this is required, the kernel sets the FU-
TEX_OWNER_DIED bit in the futex word along with the thread ID of the new owner.
User space can detect this situation via the presence of the FUTEX_OWNER_DIED
bit and is then responsible for cleaning up the stale state left over by the dead owner.

Pl futexes are operated on by specifying one of the values listed below in futex_op.
Note that the PI futex operations must be used as paired operations and are subject to
some additional requirements:

e FUTEX LOCK_PI, FUTEX_ LOCK _PI2, and FUTEX_TRYLOCK_PI pair
with FUTEX_UNLOCK PIl. FUTEX_UNLOCK _PI must be called only on a fu-
tex owned by the calling thread, as defined by the value policy, otherwise the error
EPERM results.

» FUTEX WAIT_REQUEUE_PI pairs with FUTEX_CMP_REQUEUE_PI. This
must be performed from a non-PI futex to a distinct PI futex (or the error EINVAL
results). Additionally, val (the number of waiters to be woken) must be 1 (or the er-
ror EINVAL results).

Linux man-pages 6.8 2024-05-02 237

futex(2) System Calls Manual futex(2)

The PI futex operations are as follows:

FUTEX_LOCK_PI (since Linux 2.6.18)
This operation is used after an attempt to acquire the lock via an atomic user-
mode instruction failed because the futex word has a nonzero value—specifi-
cally, because it contained the (PID-namespace-specific) TID of the lock owner.

The operation checks the value of the futex word at the address uaddr. If the
value is 0, then the kernel tries to atomically set the futex value to the caller’s
TID. If the futex word’s value is nonzero, the kernel atomically sets the FU-
TEX_WAITERS bit, which signals the futex owner that it cannot unlock the fu-
tex in user space atomically by setting the futex value to 0. After that, the ker-
nel:

(1) Tries to find the thread which is associated with the owner TID.

(2) Creates or reuses kernel state on behalf of the owner. (If this is the first
waiter, there is no kernel state for this futex, so kernel state is created by
locking the RT-mutex and the futex owner is made the owner of the
RT-mutex. If there are existing waiters, then the existing state is reused.)

(3) Attaches the waiter to the futex (i.e., the waiter is enqueued on the RT-mu-
tex waiter list).

If more than one waiter exists, the enqueueing of the waiter is in descending pri-
ority order. (For information on priority ordering, see the discussion of the
SCHED_DEADLINE, SCHED_FIFO, and SCHED_RR scheduling policies
in sched(7).) The owner inherits either the waiter’s CPU bandwidth (if the
waiter is scheduled under the SCHED_DEADLINE policy) or the waiter’s pri-
ority (if the waiter is scheduled under the SCHED_RR or SCHED_FIFO pol-
icy). This inheritance follows the lock chain in the case of nested locking and
performs deadlock detection.

The timeout argument provides a timeout for the lock attempt. If timeout is not
NULL, the structure it points to specifies an absolute timeout, measured against
the CLOCK_REALTIME clock. If timeout is NULL, the operation will block
indefinitely.

The uaddr2, val, and val3 arguments are ignored.

FUTEX _LOCK PI2 (since Linux 5.14)
This operation is the same as FUTEX_LOCK_PI, except that the clock against
which timeout is measured is selectable. By default, the (absolute) timeout spec-
ified in timeout is measured against the CLOCK_MONOTONIC clock, but if
the FUTEX_CLOCK_REALTIME flag is specified in futex_op, then the time-
out is measured against the CLOCK_REALTIME clock.

FUTEX_TRYLOCK_PI (since Linux 2.6.18)
This operation tries to acquire the lock at uaddr. It is invoked when a user-space
atomic acquire did not succeed because the futex word was not 0.

Because the kernel has access to more state information than user space, acquisi-
tion of the lock might succeed if performed by the kernel in cases where the fu-
tex word (i.e., the state information accessible to use-space) contains stale state
(FUTEX_WAITERS and/or FUTEX _OWNER_DIED). This can happen

Linux man-pages 6.8 2024-05-02 238

futex(2) System Calls Manual futex(2)

when the owner of the futex died. User space cannot handle this condition in a
race-free manner, but the kernel can fix this up and acquire the futex.

The uaddr2, val, timeout, and val3 arguments are ignored.

FUTEX_UNLOCK_ PI (since Linux 2.6.18)
This operation wakes the top priority waiter that is waiting in FU-
TEX_LOCK PI or FUTEX_LOCK PI2 on the futex address provided by the
uaddr argument.

This is called when the user-space value at uaddr cannot be changed atomically
from a TID (of the owner) to 0.

The uaddr2, val, timeout, and val3 arguments are ignored.

FUTEX_CMP_REQUEUE_PI (since Linux 2.6.31)
This operation is a Pl-aware variant of FUTEX _CMP_REQUEUE. It requeues
waiters that are blocked via FUTEX_WAIT_REQUEUE_PI on uaddr from a
non-PI source futex (uaddr) to a PI target futex (uaddr2).

As with FUTEX_CMP_REQUEUE, this operation wakes up a maximum of
val waiters that are waiting on the futex at uaddr. However, for FU-
TEX_CMP_REQUEUE_PI, val is required to be 1 (since the main point is to
avoid a thundering herd). The remaining waiters are removed from the wait
queue of the source futex at uaddr and added to the wait queue of the target fu-
tex at uaddr2.

The val2 and val3 arguments serve the same purposes as for FU-
TEX_CMP_REQUEUE.

FUTEX_WAIT_REQUEUE_PI (since Linux 2.6.31)
Wait on a non-Pl futex at uaddr and potentially be requeued (via a FU-
TEX_CMP_REQUEUE_PI operation in another task) onto a Pl futex at
uaddr2. The wait operation on uaddr is the same as for FUTEX_WAIT.

The waiter can be removed from the wait on uaddr without requeueing on
uaddr2 via a FUTEX_WAKE operation in another task. In this case, the FU-
TEX_WAIT_REQUEUE_PI operation fails with the error EAGAIN.

If timeout is not NULL, the structure it points to specifies an absolute timeout
for the wait operation. If timeout is NULL, the operation can block indefinitely.

The val3 argument is ignored.

The FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI
were added to support a fairly specific use case: support for priority-inheritance-
aware POSIX threads condition variables. The idea is that these operations
should always be paired, in order to ensure that user space and the kernel remain
in sync. Thus, in the FUTEX_WAIT_REQUEUE_PI operation, the user-space
application pre-specifies the target of the requeue that takes place in the FU-
TEX_CMP_REQUEUE_PI operation.

RETURN VALUE
In the event of an error (and assuming that futex() was invoked via syscall(2)), all opera-
tions return =1 and set errno to indicate the error.

The return value on success depends on the operation, as described in the following list:

Linux man-pages 6.8 2024-05-02 239

futex(2) System Calls Manual futex(2)

FUTEX_WAIT

Returns O if the caller was woken up. Note that a wake-up can also be caused by
common futex usage patterns in unrelated code that happened to have previously
used the futex word’s memory location (e.g., typical futex-based implementa-
tions of Pthreads mutexes can cause this under some conditions). Therefore,
callers should always conservatively assume that a return value of 0 can mean a
spurious wake-up, and use the futex word’s value (i.e., the user-space synchro-
nization scheme) to decide whether to continue to block or not.

FUTEX_WAKE
Returns the number of waiters that were woken up.

FUTEX_FD
Returns the new file descriptor associated with the futex.

FUTEX_REQUEUE
Returns the number of waiters that were woken up.

FUTEX _CMP_REQUEUE
Returns the total number of waiters that were woken up or requeued to the futex
for the futex word at uaddr2. If this value is greater than val, then the difference
is the number of waiters requeued to the futex for the futex word at uaddr2.

FUTEX_WAKE_OP
Returns the total number of waiters that were woken up. This is the sum of the
woken waiters on the two futexes for the futex words at uaddr and uaddr2.

FUTEX_WAIT_BITSET
Returns 0 if the caller was woken up. See FUTEX_WAIT for how to interpret
this correctly in practice.

FUTEX WAKE_BITSET
Returns the number of waiters that were woken up.

FUTEX_LOCK PI
Returns 0 if the futex was successfully locked.

FUTEX_LOCK_PI2
Returns 0 if the futex was successfully locked.

FUTEX_TRYLOCK_ PI
Returns 0 if the futex was successfully locked.

FUTEX_UNLOCK PI
Returns 0 if the futex was successfully unlocked.

FUTEX_CMP_REQUEUE_PI
Returns the total number of waiters that were woken up or requeued to the futex
for the futex word at uaddr2. If this value is greater than val, then difference is
the number of waiters requeued to the futex for the futex word at uaddr2.

FUTEX_WAIT_REQUEUE_PI
Returns 0 if the caller was successfully requeued to the futex for the futex word
at uaddr2.

Linux man-pages 6.8 2024-05-02 240

futex(2) System Calls Manual futex(2)

ERRORS
EACCES
No read access to the memory of a futex word.

EAGAIN
(FUTEX_WAIT, FUTEX_WAIT_BITSET, FUTEX_WAIT_REQUEUE_PI)
The value pointed to by uaddr was not equal to the expected value val at the
time of the call.

Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both of
which appear in different parts of the kernel futex code) have the same value.

EAGAIN
(FUTEX_CMP_REQUEUE, FUTEX_CMP_REQUEUE_PI) The value
pointed to by uaddr is not equal to the expected value val3.

EAGAIN
(FUTEX_LOCK_PI, FUTEX_LOCK PI2, FUTEX_TRYLOCK_PI, FU-
TEX_CMP_REQUEUE_PI) The futex owner thread ID of uaddr (for FU-
TEX_CMP_REQUEUE_PI: uaddr2) is about to exit, but has not yet handled
the internal state cleanup. Try again.

EDEADLK
(FUTEX_LOCK PI, FUTEX_LOCK PI2, FUTEX TRYLOCK_ PI, FU-
TEX_CMP_REQUEUE_PI) The futex word at uaddr is already locked by the
caller.

EDEADLK
(FUTEX_CMP_REQUEUE_PI) While requeueing a waiter to the PI futex for
the futex word at uaddr2, the kernel detected a deadlock.

EFAULT
A required pointer argument (i.e., uaddr, uaddr2, or timeout) did not point to a
valid user-space address.

EINTR
A FUTEX_WAIT or FUTEX_WAIT_BITSET operation was interrupted by a
signal (see signal(7)). Before Linux 2.6.22, this error could also be returned for
a spurious wakeup; since Linux 2.6.22, this no longer happens.

EINVAL
The operation in futex_op is one of those that employs a timeout, but the sup-
plied timeout argument was invalid (tv_sec was less than zero, or tv_nsec was
not less than 1,000,000,000).

EINVAL
The operation specified in futex_op employs one or both of the pointers uaddr
and uaddr2, but one of these does not point to a valid object—that is, the address
is not four-byte-aligned.

EINVAL
(FUTEX_WAIT BITSET, FUTEX WAKE_BITSET) The bit mask supplied
in val3 is zero.

Linux man-pages 6.8 2024-05-02 241

futex(2) System Calls Manual futex(2)

EINVAL
(FUTEX_CMP_REQUEUE_PI) uaddr equals uaddr2 (i.e., an attempt was
made to requeue to the same futex).

EINVAL
(FUTEX_FD) The signal number supplied in val is invalid.

EINVAL
(FUTEX WAKE, FUTEX WAKE _OP, FUTEX WAKE_BITSET, FU-
TEX_REQUEUE, FUTEX CMP_REQUEUE) The kernel detected an incon-
sistency between the user-space state at uaddr and the kernel state—that is, it de-
tected a waiter which waits in FUTEX _LOCK Pl or FUTEX LOCK_PI2 on
uaddr.

EINVAL
(FUTEX_LOCK PI, FUTEX_LOCK PI2, FUTEX TRYLOCK_ PI, FU-
TEX_UNLOCK_PI) The kernel detected an inconsistency between the user-
space state at uaddr and the kernel state. This indicates either state corruption or
that the kernel found a waiter on uaddr which is waiting via FUTEX_WAIT or
FUTEX_WAIT_BITSET.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between
the user-space state at uaddr2 and the kernel state; that is, the kernel detected a
waiter which waits via FUTEX_WAIT or FUTEX _WAIT_BITSET on uaddr2.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between
the user-space state at uaddr and the kernel state; that is, the kernel detected a
waiter which waits via FUTEX_WAIT or FUTEX_WAIT_BITSET on uaddr.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between
the user-space state at uaddr and the kernel state; that is, the kernel detected a
waiter which waits on uaddr via FUTEX_LOCK_PI or FUTEX_LOCK PI2
(instead of FUTEX_WAIT_REQUEUE_PI).

EINVAL
(FUTEX_CMP_REQUEUE_PI) An attempt was made to requeue a waiter to a
futex other than that specified by the matching FUTEX WAIT_REQUEUE_PI
call for that waiter.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The val argument is not 1.

EINVAL
Invalid argument.

ENFILE
(FUTEX_FD) The system-wide limit on the total number of open files has been
reached.

ENOMEM
(FUTEX_LOCK PI, FUTEX_LOCK PI2, FUTEX TRYLOCK_ PI, FU-
TEX_CMP_REQUEUE_PI) The kernel could not allocate memory to hold

Linux man-pages 6.8 2024-05-02 242

futex(2) System Calls Manual futex(2)

state information.

ENOSYS
Invalid operation specified in futex_op.

ENOSYS
The FUTEX_CLOCK_REALTIME option was specified in futex_op, but the
accompanying operation was neither FUTEX WAIT, FUTEX _WAIT BIT-
SET, FUTEX_WAIT_REQUEUE_PI, nor FUTEX_LOCK PI2.

ENOSYS
(FUTEX_LOCK PI, FUTEX LOCK PI2, FUTEX_ TRYLOCK_PI, FU-
TEX_UNLOCK_PI, FUTEX_CMP_REQUEUE_PI, FUTEX WAIT_RE-
QUEUE_PI) A run-time check determined that the operation is not available.
The PI-futex operations are not implemented on all architectures and are not sup-
ported on some CPU variants.

EPERM
(FUTEX_LOCK PI, FUTEX_LOCK PI2, FUTEX TRYLOCK_ PI, FU-
TEX_CMP_REQUEUE_PI) The caller is not allowed to attach itself to the fu-
tex at uaddr (for FUTEX _CMP_REQUEUE_PI: the futex at uaddr2). (This
may be caused by a state corruption in user space.)

EPERM
(FUTEX_UNLOCK_PI) The caller does not own the lock represented by the
futex word.

ESRCH
(FUTEX_LOCK PI, FUTEX_LOCK PI2, FUTEX TRYLOCK_PI, FU-
TEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr does not
exist.

ESRCH
(FUTEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr2
does not exist.

ETIMEDOUT
The operation in futex_op employed the timeout specified in timeout, and the
timeout expired before the operation completed.

STANDARDS

Linux.

HISTORY
Linux 2.6.0.

Initial futex support was merged in Linux 2.5.7 but with different semantics from what
was described above. A four-argument system call with the semantics described in this
page was introduced in Linux 2.5.40. A fifth argument was added in Linux 2.5.70, and a
sixth argument was added in Linux 2.6.7.

EXAMPLES
The program below demonstrates use of futexes in a program where a parent process
and a child process use a pair of futexes located inside a shared anonymous mapping to
synchronize access to a shared resource: the terminal. The two processes each write
nloops (a command-line argument that defaults to 5 if omitted) messages to the terminal

Linux man-pages 6.8 2024-05-02 243

futex(2) System Calls Manual futex(2)

and employ a synchronization protocol that ensures that they alternate in writing mes-
sages. Upon running this program we see output such as the following:

$./futex_demo
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)

Program source

A PARWWNNRERLPPFPLPOO

/* futex _demo.c

Usage: futex_demo [nloops]
(Default: 5)

Demonstrate the use of futexes iIn a program where parent and child
use a pair of futexes located inside a shared anonymous mapping to
synchronize access to a shared resource: the terminal. The two
processes each write "num-loops®™ messages to the terminal and empl
a synchronization protocol that ensures that they alternate in
writing messages.

*/

#define _GNU_SOURCE

#include <err.h>

#include <errno.h>

#include <linux/futex.h>

#include <stdatomic.h>

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/mman.h>

#include <sys/syscall.h>

#include <sys/time.h>

#include <sys/wait.h>

#include <unistd.h>

static uint32_t *futexl, *futex2, *i1addr;

static int
futex(uint32_t *uaddr, int futex op, uint32_t val,
const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3

{

return syscall(SYS_futex, uaddr, futex op, val,

Linux man-pages 6.8 2024-05-02 244

futex(2) System Calls Manual futex(2)

timeout, uaddr2, val3);

}

/* Acquire the futex pointed to by “"futexp®: wait for its value to
become 1, and then set the value to 0. */

static void
fwait(uint32_t *futexp)

{
long S;
const uint32_t one = 1;
/* atomic_compare_exchange_strong(ptr, oldval, newval)
atomically performs the equivalent of:
if (*ptr == *oldval)
*ptr = newval;
It returns true if the test yielded true and *ptr was updated.
while (1) {
/* Is the futex available? */
ifT (atomic_compare_exchange strong(futexp, &one, 0))
break; /* Yes */
/* Futex i1s not available; wait. */
s = futex(futexp, FUTEX_WAIT, O, NULL, NULL, 0);
if (s == -1 && errno '= EAGAIN)
err(EXIT_FAILURE, "futex-FUTEX_WAIT'™);
+
+

/* Release the futex pointed to by "futexp®: if the futex currently
has the value 0, set 1ts value to 1 and then wake any futex waiter
so that if the peer is blocked in fwait(), it can proceed. */

static void
fpost(uint32_t *futexp)

{
long S;
const uint32_t zero = 0;

/* atomic_compare_exchange _strong() was described
in comments above. */

iT (atomic_compare_exchange_strong(futexp, &zero, 1)) {

Linux man-pages 6.8 2024-05-02 245

futex(2) System Calls Manual futex(2)

s = futex(futexp, FUTEX WAKE, 1, NULL, NULL, 0);
if (s == -1)
err(EXIT_FAILURE, "futex—FUTEX_WAKE™);

}
+
int
main(int argc, char *argv[])
{
pid_t childPid;

unsigned int nloops;
setbuf(stdout, NULL);
nloops = (argc > 1) ? atoi(argv[l]) : 5;

/* Create a shared anonymous mapping that will hold the futexes.
Since the futexes are being shared between processes, we
subsequently use the '"shared" futex operations (i.e., not the
ones suffixed " PRIVATE™). */

1addr = mmap(NULL, sizeof(*raddr) * 2, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);
if (1addr == MAP_FAILED)
err(EXIT_FAILURE, "mmap'™);

futexl = &iaddr[O0];

futex2 = &iaddr[1];

futexl = O; / State: unavailable */
*futex2 = 1; /> State: available */

/* Create a child process that inherits the shared anonymous
mapping. */

childPid = fork();
it (childPid == -1)
err(EXIT_FAILURE, "fork™™);

it (childPid == 0) { /* Child */
for (unsigned int j = 0; jJ < nloops; J++) {
fwait(futexl);
printf(""Child (%jd) %u\n', (intmax_t) getpid(), J);
fpost(futex?);
}

exi1t(EXIT_SUCCESS);

Linux man-pages 6.8 2024-05-02 246

futex(2) System Calls Manual futex(2)

/* Parent falls through to here. */

for (unsigned int j = 0; j < nloops; j++) {

fwart(futex?);
printf("'Parent (%jd) %u\n", (intmax_t) getpidQ), j);
fpost(futexl);

+

wait(NULL);

exit(EXIT_SUCCESS);

s
SEE ALSO

get_robust_list(2), restart_syscall(2), pthread_mutexattr_getprotocol(3), futex(7),
sched(7)

The following kernel source files:

» Documentation/pi—futex.txt

» Documentation/futex—requeue—pi.txt

» Documentation/locking/rt—mutex.txt

» Documentation/locking/rt—mutex—design.txt
* Documentation/robust—futex—ABI.txt

Franke, H., Russell, R., and Kirwood, M., 2002. Fuss, Futexes and Furwocks: Fast
Userlevel Locking in Linux (from proceedings of the Ottawa Linux Symposium 2002),
http://kernel.org/doc/ols/2002/0ls2002—pages—479—-495.pdf

Hart, D., 2009. A futex overview and update, http://lwn.net/Articles/360699/

Hart, D. and Guniguntala, D., 2009. Requeue-PI: Making glibc Condvars Pl-Aware
(from proceedings of the 2009 Real-Time Linux Workshop),
http://lwn.net/images/conf/rtiws11/papers/proc/pl0.pdf

Drepper, U., 2011. Futexes Are Tricky, http://www.akkadia.org/drepper/futex.pdf

Futex example library, futex—*.tar.bz2 at
https://mirrors.kernel.org/pub/linux/kernel/people/rusty/

Linux man-pages 6.8 2024-05-02 247

http://kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://lwn.net/Articles/360699/
http://lwn.net/images/conf/rtlws11/papers/proc/p10.pdf
http://www.akkadia.org/drepper/futex.pdf
https://mirrors.kernel.org/pub/linux/kernel/people/rusty/

futimesat(2) System Calls Manual futimesat(2)

NAME
futimesat — change timestamps of a file relative to a directory file descriptor

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#include <fcntl.h> [* Definition of AT_* constants */
#include <sys/time.h>

[[deprecated]] int futimesat(int dirfd, const char * pathname,
const struct timeval times[2]);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

futimesat():
_GNU_SOURCE

DESCRIPTION
This system call is obsolete. Use utimensat(2) instead.

The futimesat() system call operates in exactly the same way as utimes(2), except for
the differences described in this manual page.

If the pathname given in pathname is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current working di-
rectory of the calling process, as is done by utimes(2) for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
utimes(2)).

If pathname is absolute, then dirfd is ignored. (See openat(2) for an explanation of why
the dirfd argument is useful.)

RETURN VALUE

On success, futimesat() returns a 0. On error, =1 is returned and errno is set to indicate
the error.

ERRORS

The same errors that occur for utimes(2) can also occur for futimesat(). The following
additional errors can occur for futimesat():

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.

VERSIONS
glibc
If pathname is NULL, then the glibc futimesat() wrapper function updates the times for
the file referred to by dirfd.

STANDARDS
None.

Linux man-pages 6.8 2024-05-02 248

futimesat(2) System Calls Manual futimesat(2)

HISTORY
Linux 2.6.16, glibc 2.4.

It was implemented from a specification that was proposed for POSIX.1, but that speci-
fication was replaced by the one for utimensat(2).
A similar system call exists on Solaris.

NOTES
SEE ALSO
stat(2), utimensat(2), utimes(2), futimes(3), path_resolution(7)

Linux man-pages 6.8 2024-05-02 249

get_kernel_syms(2) System Calls Manual get_kernel_syms(2)

NAME
get_kernel_syms — retrieve exported kernel and module symbols

SYNOPSIS

#include <linux/module.h>

[[deprecated]] int get_kernel_syms(struct kernel_sym *table);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

If table is NULL, get_kernel_syms() returns the number of symbols available for query.
Otherwise, it fills in a table of structures:

struct kernel_sym {
unsigned long value;
char name[60];
}:
The symbols are interspersed with magic symbols of the form #module-name with the
kernel having an empty name. The value associated with a symbol of this form is the
address at which the module is loaded.

The symbols exported from each module follow their magic module tag and the mod-
ules are returned in the reverse of the order in which they were loaded.

RETURN VALUE
On success, returns the number of symbols copied to table. On error, =1 is returned and
errno is set to indicate the error.

ERRORS
There is only one possible error return:

ENOSYS
get_kernel_syms() is not supported in this version of the kernel.

STANDARDS

Linux.

HISTORY

Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in glibc
headers, but, through a quirk of history, glibc versions before glibc 2.23 did export an
ABI for this system call. Therefore, in order to employ this system call, it was sufficient
to manually declare the interface in your code; alternatively, you could invoke the sys-
tem call using syscall(2).

BUGS
There is no way to indicate the size of the buffer allocated for table. If symbols have
been added to the kernel since the program queried for the symbol table size, memory
will be corrupted.

The length of exported symbol names is limited to 59 characters.

Because of these limitations, this system call is deprecated in favor of query_module(2)
(which is itself nowadays deprecated in favor of other interfaces described on its manual

page).

Linux man-pages 6.8 2024-05-02 250

get_kernel_syms(2) System Calls Manual get_kernel_syms(2)

SEE ALSO
create_module(2), delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.8 2024-05-02 251

get_mempolicy(2) System Calls Manual get_mempolicy(2)

NAME

get_mempolicy — retrieve NUMA memory policy for a thread
LIBRARY

NUMA (Non-Uniform Memory Access) policy library (libnuma, —Inuma)
SYNOPSIS

#include <numaif.h>

long get_mempolicy(int *mode,
unsigned long nodemask[(.maxnode + ULONG_WIDTH - 1)
/ ULONG_WIDTH],
unsigned long maxnode, void *addr,
unsigned long flags);

DESCRIPTION
get_mempolicy() retrieves the NUMA policy of the calling thread or of a memory ad-
dress, depending on the setting of flags.

A NUMA machine has different memory controllers with different distances to specific
CPUs. The memory policy defines from which node memory is allocated for the thread.

If flags is specified as 0, then information about the calling thread’s default policy (as
set by set_mempolicy(2)) is returned, in the buffers pointed to by mode and nodemask.
The value returned in these arguments may be used to restore the thread’s policy to its
state at the time of the call to get_mempolicy() using set_mempolicy(2). When flags is
0, addr must be specified as NULL.

If flags specifies MPOL_F_MEMS_ALLOWED (available since Linux 2.6.24), the
mode argument is ignored and the set of nodes (memories) that the thread is allowed to
specify in subsequent calls to mbind(2) or set_mempolicy(2) (in the absence of any
mode flags) is returned in nodemask. It is not permitted to combine
MPOL_F_MEMS_ALLOWED with either MPOL_F_ADDR or MPOL_F_NODE.

If flags specifies MPOL_F_ADDR, then information is returned about the policy gov-
erning the memory address given in addr. This policy may be different from the
thread’s default policy if mbind(2) or one of the helper functions described in numa(3)
has been used to establish a policy for the memory range containing addr.

If the mode argument is not NULL, then get_mempolicy() will store the policy mode
and any optional mode flags of the requested NUMA policy in the location pointed to by
this argument. If nodemask is not NULL, then the nodemask associated with the policy
will be stored in the location pointed to by this argument. maxnode specifies the num-
ber of node IDs that can be stored into nodemask—that is, the maximum node 1D plus
one. The value specified by maxnode is always rounded to a multiple of sizeof(un-
signed long)*8.

If flags specifies both MPOL_F_NODE and MPOL_F_ADDR, get_mempolicy() will
return the node ID of the node on which the address addr is allocated into the location
pointed to by mode. If no page has yet been allocated for the specified address,
get_mempolicy() will allocate a page as if the thread had performed a read (load) access
to that address, and return the 1D of the node where that page was allocated.

If flags specifies MPOL_F _NODE, but not MPOL_F_ADDR, and the thread’s current
policy is MPOL_INTERLEAVE or MPOL_WEIGHTED_INTERLEAVE, then

Linux man-pages 6.8 2024-05-02 252

get_mempolicy(2) System Calls Manual get_mempolicy(2)

get_mempolicy() will return in the location pointed to by a non-NULL mode argument,
the node ID of the next node that will be used for interleaving of internal kernel pages
allocated on behalf of the thread. These allocations include pages for memory-mapped
files in process memory ranges mapped using the mmap(2) call with the MAP_PRI-
VATE flag for read accesses, and in memory ranges mapped with the MAP_SHARED
flag for all accesses.

Other flag values are reserved.

For an overview of the possible policies see set_mempolicy(2).

RETURN VALUE
On success, get_mempolicy() returns 0; on error, =1 is returned and errno is set to indi-
cate the error.

ERRORS

EFAULT

Part of all of the memory range specified by nodemask and maxnode points out-
side your accessible address space.

EINVAL

The value specified by maxnode is less than the number of node IDs supported
by the system. Or flags specified values other than MPOL_F_NODE or
MPOL_F_ADDR,; or flags specified MPOL_F_ADDR and addr is NULL, or
flags did not specify MPOL_F_ADDR and addr is not NULL. Or, flags speci-
fied MPOL_F_NODE but not MPOL_F_ADDR and the current thread policy
is neither MPOL_INTERLEAVE nor MPOL_WEIGHTED_INTERLEAVE.
Or, flags specified MPOL_F MEMS _ALLOWED with either
MPOL_F_ADDR or MPOL_F _NODE. (And there are other EINVAL cases.)

STANDARDS

Linux.

HISTORY
Linux 2.6.7.

NOTES

For information on library support, see numa(7).

SEE ALSO
getcpu(2), mbind(2), mmap(2), set_mempolicy(2), numa(3), numa(7), numactl(8)

Linux man-pages 6.8 2024-05-02 253

get_robust_list(2) System Calls Manual get_robust_list(2)

NAME

get_robust_list, set_robust_list — get/set list of robust futexes
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/futex.h> /* Definition of struct robust_list_head */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_get_robust_list, int pid,

struct robust_list_head **head_ptr, size_t *len_ptr);
long syscall(SYS_set_robust_list,

struct robust_list_head *head, size_t len);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These system calls deal with per-thread robust futex lists. These lists are managed in
user space: the kernel knows only about the location of the head of the list. A thread can
inform the kernel of the location of its robust futex list using set_robust_list(). The ad-
dress of a thread’s robust futex list can be obtained using get_robust_list().

The purpose of the robust futex list is to ensure that if a thread accidentally fails to un-
lock a futex before terminating or calling execve(2), another thread that is waiting on
that futex is notified that the former owner of the futex has died. This notification con-
sists of two pieces: the FUTEX_OWNER_DIED bit is set in the futex word, and the
kernel performs a futex(2) FUTEX_WAKE operation on one of the threads waiting on
the futex.

The get_robust_list() system call returns the head of the robust futex list of the thread
whose thread ID is specified in pid. If pid is 0, the head of the list for the calling thread
is returned. The list head is stored in the location pointed to by head_ptr. The size of
the object pointed to by **head_ptr is stored in len_ptr.

Permission to employ get robust list() is governed by a ptrace access mode
PTRACE_MODE_READ_REALCREDS check; see ptrace(2).

The set_robust_list() system call requests the kernel to record the head of the list of ro-
bust futexes owned by the calling thread. The head argument is the list head to record.
The len argument should be sizeof(*head).

RETURN VALUE

The set_robust_list() and get_robust_list() system calls return zero when the operation
is successful, an error code otherwise.

ERRORS
The set_robust_list() system call can fail with the following error:

EINVAL
len does not equal sizeof(struct robust_list_head).

The get_robust_list() system call can fail with the following errors:

Linux man-pages 6.8 2024-05-02 254

get_robust_list(2) System Calls Manual get_robust_list(2)

EFAULT
The head of the robust futex list can’t be stored at the location head.

EPERM
The calling process does not have permission to see the robust futex list of the
thread with the thread ID pid, and does not have the CAP_SYS_PTRACE ca-
pability.

ESRCH
No thread with the thread ID pid could be found.

VERSIONS
These system calls were added in Linux 2.6.17.

NOTES
These system calls are not needed by normal applications.

A thread can have only one robust futex list; therefore applications that wish to use this
functionality should use the robust mutexes provided by glibc.

In the initial implementation, a thread waiting on a futex was notified that the owner had
died only if the owner terminated. Starting with Linux 2.6.28, notification was extended
to include the case where the owner performs an execve(2).

The thread IDs mentioned in the main text are kernel thread 1Ds of the kind returned by
clone(2) and gettid(2).

SEE ALSO
futex(2), pthread_mutexattr_setrobust(3)

Documentation/robust—futexes.txt and Documentation/robust—futex—ABL.txt in the
Linux kernel source tree

Linux man-pages 6.8 2024-05-02 255

getcpu(2) System Calls Manual getcpu(2)

NAME
getcpu — determine CPU and NUMA node on which the calling thread is running

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#define _ GNU_SOURCE I* See feature_test_macros(7) */
#include <sched.h>

int getcpu(unsigned int *_Nullable cpu, unsigned int *_Nullable node);

DESCRIPTION
The getcpu() system call identifies the processor and node on which the calling thread
or process is currently running and writes them into the integers pointed to by the cpu
and node arguments. The processor is a unique small integer identifying a CPU. The
node is a unique small identifier identifying a NUMA node. When either cpu or node is
NULL nothing is written to the respective pointer.

The information placed in cpu is guaranteed to be current only at the time of the call:
unless the CPU affinity has been fixed using sched_setaffinity(2), the kernel might
change the CPU at any time. (Normally this does not happen because the scheduler tries
to minimize movements between CPUs to keep caches hot, but it is possible.) The caller
must allow for the possibility that the information returned in cpu and node is no longer
current by the time the call returns.

RETURN VALUE

On success, 0 is returned. On error, =1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT
Arguments point outside the calling process’s address space.

STANDARDS
Linux.

HISTORY
Linux 2.6.19 (x86-64 and i386), glibc 2.29.

C library/kernel differences
The kernel system call has a third argument:

int getcpu(unsigned int *cpu, unsigned int *node,
struct getcpu_cache *tcache);

The tcache argument is unused since Linux 2.6.24, and (when invoking the system call
directly) should be specified as NULL, unless portability to Linux 2.6.23 or earlier is re-
quired.

In Linux 2.6.23 and earlier, if the tcache argument was non-NULL, then it specified a
pointer to a caller-allocated buffer in thread-local storage that was used to provide a
caching mechanism for getcpu(). Use of the cache could speed getcpu() calls, at the
cost that there was a very small chance that the returned information would be out of
date. The caching mechanism was considered to cause problems when migrating
threads between CPUs, and so the argument is now ignored.

Linux man-pages 6.8 2024-05-02 256

getcpu(2) System Calls Manual getcpu(2)

NOTES
Linux makes a best effort to make this call as fast as possible. (On some architectures,
this is done via an implementation in the vdso(7).) The intention of getcpu() is to allow
programs to make optimizations with per-CPU data or for NUMA optimization.

SEE ALSO
mbind(2), sched_setaffinity(2), set_mempolicy(2), sched_getcpu(3), cpuset(7), vdso(7)

Linux man-pages 6.8 2024-05-02 257

getdents(2) System Calls Manual getdents(2)

NAME

getdents, getdents64 — get directory entries
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_getdents, unsigned int fd, struct linux_dirent *dirp,
unsigned int count);

#define _ GNU_SOURCE I* See feature_test_macros(7) */
#include <dirent.h>

ssize_t getdents64(int fd, void dirp[.count], size_t count);
Note: glibc provides no wrapper for getdents(), necessitating the use of syscall(2).

Note: There is no definition of struct linux_dirent in glibc; see NOTES.

DESCRIPTION
These are not the interfaces you are interested in. Look at readdir(3) for the POSIX-
conforming C library interface. This page documents the bare kernel system call inter-
faces.

getdents()
The system call getdents() reads several linux_dirent structures from the directory re-
ferred to by the open file descriptor fd into the buffer pointed to by dirp. The argument
count specifies the size of that buffer.

The linux_dirent structure is declared as follows:

struct linux_dirent {

unsigned long d_ino; /* 1node number */

unsigned long d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this linux_dirent */
char d_name[]; 7/* Filename (null-terminated) */

/* length i1s actually (d_reclen - 2 -
offsetof(struct linux _dirent, d_name)) */

/*
char pad; // Zero padding byte
char d_type; // File type (only since Linux
// 2.6.4); offset 1s (d_reclen - 1)
*/

}

d_ino is an inode number. d_off is a filesystem-specific value with no specific meaning
to user space, though on older filesystems it used to be the distance from the start of the
directory to the start of the next linux_dirent; see readdir(3). d_reclen is the size of this
entire linux_dirent. d_name is a null-terminated filename.

d_type is a byte at the end of the structure that indicates the file type. It contains one of
the following values (defined in <dirent.h>):

Linux man-pages 6.8 2024-05-02 258

getdents(2) System Calls Manual getdents(2)

DT _BLK This is a block device.
DT_CHR This is a character device.

DT _DIR This is a directory.

DT_FIFO Thisis a named pipe (FIFO).
DT_LNK This is a symbolic link.
DT_REG This is a regular file.

DT _SOCK Thisisa UNIX domain socket.

DT_UNKNOWN
The file type is unknown.

The d_type field is implemented since Linux 2.6.4. It occupies a space that was previ-
ously a zero-filled padding byte in the linux_dirent structure. Thus, on kernels up to and
including Linux 2.6.3, attempting to access this field always provides the value 0
(DT_UNKNOWN).

Currently, only some filesystems (among them: Btrfs, ext2, ext3, and ext4) have full
support for returning the file type in d_type. All applications must properly handle a re-
turn of DT_UNKNOWN.

getdents64()
The original Linux getdents() system call did not handle large filesystems and large file
offsets. Consequently, Linux 2.4 added getdents64(), with wider types for the d_ino
and d_off fields. In addition, getdents64() supports an explicit d_type field.

The getdents64() system call is like getdents(), except that its second argument is a
pointer to a buffer containing structures of the following type:

struct linux_dirent64 {
ino64 t d 1no; /* 64-bit inode number */
off64_t d_off; /* Not an offset; see getdents() */
unsigned short d_reclen; /* Size of this dirent */
unsigned char d_type; /* File type */
char d_name[]; /* Filename (null-terminated) */
}:
RETURN VALUE
On success, the number of bytes read is returned. On end of directory, O is returned. On
error, —1 is returned, and errno is set to indicate the error.

ERRORS
EBADF
Invalid file descriptor fd.

EFAULT
Argument points outside the calling process’s address space.

EINVAL
Result buffer is too small.

ENOENT
No such directory.

Linux man-pages 6.8 2024-05-02 259

getdents(2) System Calls Manual getdents(2)

ENOTDIR
File descriptor does not refer to a directory.

STANDARDS
None.

HISTORY
SVr4.

getdents64()
glibc 2.30.

NOTES
glibc does not provide a wrapper for getdents(); call getdents() using syscall(2). In that
case you will need to define the linux_dirent or linux_dirent64 structure yourself.

Probably, you want to use readdir(3) instead of these system calls.

These calls supersede readdir(2).

EXAMPLES
The program below demonstrates the use of getdents(). The following output shows an
example of what we see when running this program on an ext2 directory:

$./a.out /testfs/

——— nread=120 ———————————————
inode# Tile type d_reclen d_off d_name
2 directory 16 12
2 directory 16 24 .
11 directory 24 44 lost+found
12 regular 16 56 a
228929 directory 16 68 sub
16353 directory 16 80 sub2
130817 directory 16 4096 sub3

Program source

#define _GNU_SOURCE

#include <dirent.h> /* Defines DT_* constants */
#include <err.h>

#include <fcntl.h>

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/syscall.h>

#include <sys/types.h>

#include <unistd.h>

struct linux_dirent {
unsigned long d_ino;

off t d _off;
unsigned short d_reclen;
char d _name[];

};

Linux man-pages 6.8 2024-05-02 260

getdents(2)

System Calls Manual getdents(2)

#define BUF_SIZE 1024

int

main(int argc, char *argv[])

{

}

int

char
char
long
stru

}

exit

SEE ALSO
readdir(2), readdir(3), inode(7)

fd;
d_type;
buf[BUF_SIZE];
nread;

ct linux_dirent *d;

open(argc > 1 ? argv[1l] : ".", O_RDONLY | O_DIRECTORY);
err(EXIT_FAILURE, "open');

G A
nread = syscall(SYS_getdents, fd, buf, BUF_SIZE);
if (nread == -1)

err(EXIT_FAILURE, '‘getdents™);

it (nread == 0)
break;

printf("-———————— nread=%ld ~———————— \n"", nread);
printf(""'inode# file type d _reclen d off d_name\n");
for (size_t bpos = 0; bpos < nread;) {
d = (struct linux_dirent *) (buf + bpos);
printf(""%8lu ', d->d_ino);
d _type = *(buf + bpos + d->d_reclen - 1);
printf(""%-10s ", (d_type == DT_REG) ? "regular™ :
(d_type == DT_DIR) ? "directory”
(d_type == DT_FIFO) ? "FIFO" :
(d_type == DT_SOCK) ? "socket" :
(d_type == DT_LNK) ? *symlink™ :
(d_type == DT_BLK) ? "block dev" :
(d_type == DT_CHR) ? *char dev'™ : ™"?2??"
printf("'%4d %10jd %s\n', d->d_reclen,
(intmax_t) d->d_off, d->d_name);
bpos += d->d_reclen;

(EX1T_SUCCESS);

Linux man-pages 6.8 2024-05-02 261

getdomainname(2) System Calls Manual getdomainname(2)

NAME

getdomainname, setdomainname — get/set NIS domain name
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int getdomainname(char *name, size_t len);
int setdomainname(const char *name, size_t len);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdomainname(), setdomainname():
Since glibc 2.21:
_DEFAULT_SOURCE
In glibc 2.19 and 2.20:
_DEFAULT_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:
_BSD_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION

These functions are used to access or to change the NIS domain name of the host sys-
tem. More precisely, they operate on the NIS domain name associated with the calling
process’s UTS namespace.

setdomainname() sets the domain name to the value given in the character array name.
The len argument specifies the number of bytes in name. (Thus, name does not require
a terminating null byte.)

getdomainname() returns the null-terminated domain name in the character array name,
which has a length of len bytes. If the null-terminated domain name requires more than
len bytes, getdomainname() returns the first len bytes (glibc) or gives an error (libc).

RETURN VALUE

On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
setdomainname() can fail with the following errors:

EFAULT
name pointed outside of user address space.

EINVAL
len was negative or too large.

EPERM
The caller did not have the CAP_SYS_ADMIN capability in the user name-
space associated with its UTS namespace (see namespaces(7)).

getdomainname() can fail with the following errors:

EINVAL

For getdomainname() under libc: name is NULL or name is longer than len
bytes.

Linux man-pages 6.8 2024-05-02 262

getdomainname(2) System Calls Manual getdomainname(2)

VERSIONS
On most Linux architectures (including x86), there is no getdomainname() system call;
instead, glibc implements getdomainname() as a library function that returns a copy of
the domainname field returned from a call to uname(2).

STANDARDS
None.

HISTORY
Since Linux 1.0, the limit on the length of a domain name, including the terminating
null byte, is 64 bytes. In older kernels, it was 8 bytes.

SEE ALSO

gethostname(2), sethostname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.8 2024-05-02 263

getgid(2) System Calls Manual getgid(2)

NAME

getgid, getegid — get group identity
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
gid_t getgid(void);
gid_t getegid(void);

DESCRIPTION
getgid() returns the real group ID of the calling process.

getegid() returns the effective group ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

VERSIONS
On Alpha, instead of a pair of getgid() and getegid() system calls, a single getxgid()
system call is provided, which returns a pair of real and effective GIDs. The glibc get-
gid() and getegid() wrapper functions transparently deal with this. See syscall(2) for
details regarding register mapping.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

The original Linux getgid() and getegid() system calls supported only 16-bit group IDs.
Subsequently, Linux 2.4 added getgid32() and getegid32(), supporting 32-bit IDs. The
glibc getgid() and getegid() wrapper functions transparently deal with the variations
across kernel versions.

SEE ALSO
getresgid(2), setgid(2), setregid(2), credentials(7)

Linux man-pages 6.8 2024-05-02 264

getgroups(2) System Calls Manual getgroups(2)

NAME

getgroups, setgroups — get/set list of supplementary group IDs
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int getgroups(int size, gid_t list[]);
#include <grp.h>
int setgroups(size_t size, const gid_t *_Nullable list);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setgroups():
Since glibc 2.19:
_DEFAULT_SOURCE
glibc 2.19 and earlier:
_BSD_SOURCE

DESCRIPTION
getgroups() returns the supplementary group IDs of the calling process in list. The ar-
gument size should be set to the maximum number of items that can be stored in the
buffer pointed to by list. If the calling process is a member of more than size supple-
mentary groups, then an error results.

It is unspecified whether the effective group ID of the calling process is included in the
returned list. (Thus, an application should also call getegid(2) and add or remove the re-
sulting value.)

If size is zero, list is not modified, but the total number of supplementary group IDs for
the process is returned. This allows the caller to determine the size of a dynamically al-
located list to be used in a further call to getgroups().

setgroups() sets the supplementary group IDs for the calling process. Appropriate priv-
ileges are required (see the description of the EPERM error, below). The size argument
specifies the number of supplementary group IDs in the buffer pointed to by list. A
process can drop all of its supplementary groups with the call:

setgroups(0, NULL);
RETURN VALUE

On success, getgroups() returns the number of supplementary group IDs. On error, -1
is returned, and errno is set to indicate the error.

On success, setgroups() returns 0. On error, —1 is returned, and errno is set to indicate
the error.

ERRORS
EFAULT
list has an invalid address.

getgroups() can additionally fail with the following error:

Linux man-pages 6.8 2024-05-02 265

getgroups(2) System Calls Manual getgroups(2)

EINVAL
size is less than the number of supplementary group IDs, but is not zero.

setgroups() can additionally fail with the following errors:

EINVAL
size is greater than NGROUPS_MAX (32 before Linux 2.6.4; 65536 since
Linux 2.6.4).

ENOMEM
Out of memory.

EPERM
The calling process has insufficient privilege (the caller does not have the
CAP_SETGID capability in the user namespace in which it resides).

EPERM (since Linux 3.19)
The use of setgroups() is denied in this user namespace. See the description of
/proc/ pid/setgroups in user_namespaces(7).

VERSIONS
C library/kernel differences
At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX
requires that all threads in a process share the same credentials. The NPTL threading
implementation handles the POSIX requirements by providing wrapper functions for the
various system calls that change process UIDs and GIDs. These wrapper functions (in-
cluding the one for setgroups()) employ a signal-based technique to ensure that when
one thread changes credentials, all of the other threads in the process also change their
credentials. For details, see nptl(7).

STANDARDS
getgroups()
POSIX.1-2008.

setgroups()
None.
HISTORY
getgroups()
SVr4, 4.3BSD, POSIX.1-2001.

setgroups()
SVr4, 4.3BSD. Since setgroups() requires privilege, it is not covered by
POSIX.1.

The original Linux getgroups() system call supported only 16-bit group IDs. Subse-
quently, Linux 2.4 added getgroups32(), supporting 32-bit IDs. The glibc getgroups()
wrapper function transparently deals with the variation across kernel versions.

NOTES
A process can have up to NGROUPS_MAX supplementary group IDs in addition to the
effective group ID. The constant NGROUPS_MAX is defined in <limits.h>. The set
of supplementary group IDs is inherited from the parent process, and preserved across
an execve(2).

The maximum number of supplementary group IDs can be found at run time using

Linux man-pages 6.8 2024-05-02 266

getgroups(2) System Calls Manual getgroups(2)

sysconf(3):
long ngroups_max;
ngroups_max = sysconf(_SC_NGROUPS_MAX) ;
The maximum return value of getgroups() cannot be larger than one more than this

value. Since Linux 2.6.4, the maximum number of supplementary group IDs is also ex-
posed via the Linux-specific read-only file, /proc/sys/kernel/ngroups_max.

SEE ALSO
getgid(2), setgid(2), getgrouplist(3), group_member(3), initgroups(3), capabilities(7),
credentials(7)

Linux man-pages 6.8 2024-05-02 267

gethostname(2) System Calls Manual gethostname(2)

NAME

gethostname, sethostname — get/set hostname
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int gethostname(char *name, size_t len);
int sethostname(const char *name, size_t len);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostname():
_XOPEN_SOURCE >=500 || _POSIX_C_SOURCE >=200112L
|| 7* glibc 2.19 and earlier */ _BSD_SOURCE

sethostname():
Since glibc 2.21:
_DEFAULT_SOURCE
In glibc 2.19 and 2.20:
_DEFAULT_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:
_BSD_SOURCE || (_ XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
These system calls are used to access or to change the system hostname. More pre-
cisely, they operate on the hostname associated with the calling process’s UTS name-
space.

sethostname() sets the hostname to the value given in the character array name. The
len argument specifies the number of bytes in name. (Thus, name does not require a ter-
minating null byte.)

gethostname() returns the null-terminated hostname in the character array name, which
has a length of len bytes. If the null-terminated hostname is too large to fit, then the
name is truncated, and no error is returned (but see NOTES below). POSIX.1 says that
if such truncation occurs, then it is unspecified whether the returned buffer includes a
terminating null byte.

RETURN VALUE

On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT
name is an invalid address.

EINVAL
len is negative or, for sethostname(), len is larger than the maximum allowed
size.

ENAMETOOLONG
(glibc gethostname()) len is smaller than the actual size. (Before glibc 2.1,
glibc uses EINVAL for this case.)

Linux man-pages 6.8 2024-05-02 268

gethostname(2) System Calls Manual gethostname(2)

EPERM
For sethostname(), the caller did not have the CAP_SYS_ADMIN capability in
the user namespace associated with its UTS namespace (see namespaces(7)).

VERSIONS
SUSV2 guarantees that "Host names are limited to 255 bytes”. POSIX.1 guarantees that
"Host names (not including the terminating null byte) are limited to
HOST_NAME_MAX bytes". On Linux, HOST_NAME_MAX is defined with the
value 64, which has been the limit since Linux 1.0 (earlier kernels imposed a limit of 8
bytes).

C library/kernel differences
The GNU C library does not employ the gethostname() system call; instead, it imple-
ments gethostname() as a library function that calls uname(2) and copies up to len
bytes from the returned nodename field into name. Having performed the copy, the
function then checks if the length of the nodename was greater than or equal to len, and
if it is, then the function returns —1 with errno set to ENAMETOOLONG,; in this case,
a terminating null byte is not included in the returned name.

STANDARDS

gethostname()
POSIX.1-2008.

sethostname()
None.

HISTORY
SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD). POSIX.1-2001 and
POSIX.1-2008 specify gethostname() but not sethostname().

Versions of glibc before glibc 2.2 handle the case where the length of the nodename was
greater than or equal to len differently: nothing is copied into name and the function re-
turns —1 with errno set to ENAMETOOLONG.

SEE ALSO
hostname(1), getdomainname(2), setdomainname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.8 2024-05-02 269

getitimer(2) System Calls Manual getitimer(2)

NAME

getitimer, setitimer — get or set value of an interval timer
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *restrict new_value,
struct itimerval *_Nullable restrict old_value);

DESCRIPTION
These system calls provide access to interval timers, that is, timers that initially expire at
some point in the future, and (optionally) at regular intervals after that. When a timer
expires, a signal is generated for the calling process, and the timer is reset to the speci-
fied interval (if the interval is nonzero).

Three types of timers—specified via the which argument—are provided, each of which
counts against a different clock and generates a different signal on timer expiration:

ITIMER_REAL

This timer counts down in real (i.e., wall clock) time. At each expiration, a
SIGALRM signal is generated.

ITIMER_VIRTUAL
This timer counts down against the user-mode CPU time consumed by the
process. (The measurement includes CPU time consumed by all threads in the
process.) At each expiration, a SIGVTALRM signal is generated.

ITIMER_PROF
This timer counts down against the total (i.e., both user and system) CPU time
consumed by the process. (The measurement includes CPU time consumed by
all threads in the process.) At each expiration, a SIGPROF signal is generated.

In conjunction with ITIMER_VIRTUAL, this timer can be used to profile user
and system CPU time consumed by the process.

A process has only one of each of the three types of timers.
Timer values are defined by the following structures:

struct i1timerval {
struct timeval i1t _interval; /* Interval for periodic timer */

struct timeval 1t _value; /* Time until next expiration */
}:
struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
s
getitimer ()

The function getitimer() places the current value of the timer specified by which in the
buffer pointed to by curr_value.

Linux man-pages 6.8 2024-05-02 270

getitimer(2) System Calls Manual getitimer(2)

The it_value substructure is populated with the amount of time remaining until the next
expiration of the specified timer. This value changes as the timer counts down, and will
be reset to it_interval when the timer expires. If both fields of it_value are zero, then
this timer is currently disarmed (inactive).

The it_interval substructure is populated with the timer interval. If both fields of it_in-
terval are zero, then this is a single-shot timer (i.e., it expires just once).

setitimer()
The function setitimer() arms or disarms the timer specified by which, by setting the
timer to the value specified by new_value. If old_value is non-NULL, the buffer it
points to is used to return the previous value of the timer (i.e., the same information that
is returned by getitimer())

If either field in new_value.it_value is nonzero, then the timer is armed to initially expire
at the specified time. If both fields in new_value.it_value are zero, then the timer is dis-
armed.

The new_value.it_interval field specifies the new interval for the timer; if both of its
subfields are zero, the timer is single-shot.

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT
new_value, old_value, or curr_value is not valid a pointer.

EINVAL
which is not one of ITIMER_REAL, ITIMER_VIRTUAL, or
ITIMER_PROF,; or (since Linux 2.6.22) one of the tv_usec fields in the struc-
ture pointed to by new_value contains a value outside the range [0, 999999].

VERSIONS
The standards are silent on the meaning of the call:

setitimer(which, NULL, &old value);
Many systems (Solaris, the BSDs, and perhaps others) treat this as equivalent to:
getitimer(which, &old value);

In Linux, this is treated as being equivalent to a call in which the new_value fields are
zero; that is, the timer is disabled. Don’t use this Linux misfeature: it is nonportable and
unnecessary.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (this call first appeared in 4.2BSD). POSIX.1-2008
marks getitimer() and setitimer() obsolete, recommending the use of the POSIX timers
API (timer_gettime(2), timer_settime(2), etc.) instead.

Linux man-pages 6.8 2024-05-02 271

getitimer(2) System Calls Manual getitimer(2)

NOTES
Timers will never expire before the requested time, but may expire some (short) time af-
terward, which depends on the system timer resolution and on the system load; see
time(7). (But see BUGS below.) If the timer expires while the process is active (always
true for ITIMER_VIRTUAL), the signal will be delivered immediately when gener-
ated.

A child created via fork(2) does not inherit its parent’s interval timers. Interval timers
are preserved across an execve(2).

POSIX.1 leaves the interaction between setitimer() and the three interfaces alarm(2),
sleep(3), and usleep(3) unspecified.

BUGS
The generation and delivery of a signal are distinct, and only one instance of each of the
signals listed above may be pending for a process. Under very heavy loading, an
ITIMER_REAL timer may expire before the signal from a previous expiration has
been delivered. The second signal in such an event will be lost.

Before Linux 2.6.16, timer values are represented in jiffies. If a request is made set a
timer with a value whose jiffies representation exceeds MAX_SEC_IN_JIFFIES (de-
fined in include/linux/jiffies.h), then the timer is silently truncated to this ceiling value.
On Linux/i386 (where, since Linux 2.6.13, the default jiffy is 0.004 seconds), this means
that the ceiling value for a timer is approximately 99.42 days. Since Linux 2.6.16, the
kernel uses a different internal representation for times, and this ceiling is removed.

On certain systems (including 1386), Linux kernels before Linux 2.6.12 have a bug
which will produce premature timer expirations of up to one jiffy under some circum-
stances. This bug is fixed in Linux 2.6.12.

POSIX.1-2001 says that setitimer() should fail if a tv_usec value is specified that is out-
side of the range [0, 999999]. However, up to and including Linux 2.6.21, Linux does
not give an error, but instead silently adjusts the corresponding seconds value for the
timer. From Linux 2.6.22 onward, this nonconformance has been repaired: an improper
tv_usec value results in an EINVAL error.

SEE ALSO
gettimeofday(2), sigaction(2), signal(2), timer_create(2), timerfd_create(2), time(7)

Linux man-pages 6.8 2024-05-02 272

getpagesize(2) System Calls Manual getpagesize(2)

NAME

getpagesize — get memory page size
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int getpagesize(void);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
getpagesize():
Since glibc 2.20:
_DEFAULT_SOURCE || ! (_POSIX_C_SOURCE >=200112L)
glibc 2.12 to glibc 2.19:
_BSD_SOURCE || ! (_ POSIX_C_SOURCE >=200112L)

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The function getpagesize() returns the number of bytes in a memory page, where "page"
is a fixed-length block, the unit for memory allocation and file mapping performed by
mmap(2).

VERSIONS
A user program should not hard-code a page size, neither as a literal nor using the
PAGE_SIZE macro, because some architectures support multiple page sizes.

This manual page is in section 2 because Alpha, SPARC, and SPARC64 all have a
Linux system call getpagesize() though other architectures do not, and use the ELF aux-
iliary vector instead.

STANDARDS
None.

HISTORY
This call first appeared in 4.2BSD. SVr4, 4.4BSD, SUSv2. In SUSv2 the getpagesize()
call was labeled LEGACY, and it was removed in POSIX.1-2001.

glibc 2.0 returned a constant even on architectures with multiple page sizes.

SEE ALSO
mmap(2), sysconf(3)

Linux man-pages 6.8 2024-05-02 273

getpeername(2) System Calls Manual getpeername(2)

NAME

getpeername — get name of connected peer socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION
getpeername() returns the address of the peer connected to the socket sockfd, in the
buffer pointed to by addr. The addrlen argument should be initialized to indicate the
amount of space pointed to by addr. On return it contains the actual size of the name
returned (in bytes). The name is truncated if the buffer provided is too small.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the er-
ror.
ERRORS
EBADF
The argument sockfd is not a valid file descriptor.
EFAULT
The addr argument points to memory not in a valid part of the process address
space.
EINVAL
addrlen is invalid (e.g., is negative).
ENOBUFS
Insufficient resources were available in the system to perform the operation.
ENOTCONN
The socket is not connected.
ENOTSOCK
The file descriptor sockfd does not refer to a socket.
STANDARDS
POSIX.1-2008.
HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).
NOTES

For stream sockets, once a connect(2) has been performed, either socket can call get-
peername() to obtain the address of the peer socket. On the other hand, datagram sock-
ets are connectionless. Calling connect(2) on a datagram socket merely sets the peer ad-
dress for outgoing datagrams sent with write(2) or recv(2). The caller of connect(2) can
use getpeername() to obtain the peer address that it earlier set for the socket. However,

Linux man-pages 6.8 2024-05-02 274

getpeername(2) System Calls Manual getpeername(2)

the peer socket is unaware of this information, and calling getpeername() on the peer
socket will return no useful information (unless a connect(2) call was also executed on
the peer). Note also that the receiver of a datagram can obtain the address of the sender
when using recvfrom(2).

SEE ALSO
accept(2), bind(2), getsockname(2), ip(7), socket(7), unix(7)

Linux man-pages 6.8 2024-05-02 275

getpid(2) System Calls Manual getpid(2)

NAME

getpid, getppid — get process identification
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

DESCRIPTION
getpid() returns the process ID (PID) of the calling process. (This is often used by rou-
tines that generate unique temporary filenames.)

getppid() returns the process ID of the parent of the calling process. This will be either
the ID of the process that created this process using fork(), or, if that process has already
terminated, the ID of the process to which this process has been reparented (either
init(1) or a "subreaper" process defined via the prctl(2) PR_SET_CHILD_SUB-
REAPER operation).

ERRORS
These functions are always successful.

VERSIONS
On Alpha, instead of a pair of getpid() and getppid() system calls, a single getxpid()
system call is provided, which returns a pair of PID and parent PID. The glibc getpid()
and getppid() wrapper functions transparently deal with this. See syscall(2) for details
regarding register mapping.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD, SVr4.

C library/kernel differences

From glibc 2.3.4 up to and including glibc 2.24, the glibc wrapper function for getpid()
cached PIDs, with the goal of avoiding additional system calls when a process calls get-
pid() repeatedly. Normally this caching was invisible, but its correct operation relied on
support in the wrapper functions for fork(2), vfork(2), and clone(2): if an application by-
passed the glibc wrappers for these system calls by using syscall(2), then a call to get-
pid() in the child would return the wrong value (to be precise: it would return the PID of
the parent process). In addition, there were cases where getpid() could return the wrong
value even when invoking clone(2) via the glibc wrapper function. (For a discussion of
one such case, see BUGS in clone(2).) Furthermore, the complexity of the caching code
had been the source of a few bugs within glibc over the years.

Because of the aforementioned problems, since glibc 2.25, the PID cache is removed:
calls to getpid() always invoke the actual system call, rather than returning a cached
value.

NOTES

If the caller’s parent is in a different PID namespace (see pid_namespaces(7)), getppid()
returns 0.

Linux man-pages 6.8 2024-05-02 276

getpid(2) System Calls Manual getpid(2)

From a kernel perspective, the PID (which is shared by all of the threads in a multi-
threaded process) is sometimes also known as the thread group ID (TGID). This con-
trasts with the kernel thread ID (TID), which is unique for each thread. For further de-
tails, see gettid(2) and the discussion of the CLONE_THREAD flag in clone(2).

SEE ALSO
clone(2), fork(2), gettid(2), kill(2), exec(3), mkstemp(3), tempnam(3), tmpfile(3),
tmpnam(3), credentials(7), pid_namespaces(7)

Linux man-pages 6.8 2024-05-02 277

getpriority(2) System Calls Manual getpriority(2)

NAME

getpriority, setpriority — get/set program scheduling priority
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and
who is obtained with the getpriority() call and set with the setpriority() call. The
process attribute dealt with by these system calls is the same attribute (also known as the
"nice" value) that is dealt with by nice(2).

The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and
who is interpreted relative to which (a process identifier for PRIO_PROCESS, process
group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value for
who denotes (respectively) the calling process, the process group of the calling process,
or the real user 1D of the calling process.

The prio argument is a value in the range —20 to 19 (but see NOTES below), with —20
being the highest priority and 19 being the lowest priority. Attempts to set a priority
outside this range are silently clamped to the range. The default priority is O; lower val-
ues give a process a higher scheduling priority.

The getpriority() call returns the highest priority (lowest numerical value) enjoyed by
any of the specified processes. The setpriority() call sets the priorities of all of the
specified processes to the specified value.

Traditionally, only a privileged process could lower the nice value (i.e., set a higher pri-
ority). However, since Linux 2.6.12, an unprivileged process can decrease the nice
value of a target process that has a suitable RLIMIT_NICE soft limit; see getrlimit(2)
for details.

RETURN VALUE
On success, getpriority() returns the calling thread’s nice value, which may be a nega-
tive number. On error, it returns —1 and sets errno to indicate the error.

Since a successful call to getpriority() can legitimately return the value -1, it is neces-
sary to clear errno prior to the call, then check errno afterward to determine if =1 is an
error or a legitimate value.

setpriority() returns 0 on success. On failure, it returns —1 and sets errno to indicate
the error.

ERRORS
EACCES
The caller attempted to set a lower nice value (i.e., a higher process priority), but
did not have the required privilege (on Linux: did not have the CAP_SYS_NICE
capability).

Linux man-pages 6.8 2024-05-02 278

getpriority(2) System Calls Manual getpriority(2)

EINVAL
which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

EPERM
A process was located, but its effective user ID did not match either the effective
or the real user 1D of the caller, and was not privileged (on Linux: did not have
the CAP_SYS_NICE capability). But see NOTES below.

ESRCH
No process was located using the which and who values specified.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD).

NOTES
For further details on the nice value, see sched(7).

Note: the addition of the "autogroup™ feature in Linux 2.6.38 means that the nice value
no longer has its traditional effect in many circumstances. For details, see sched(7).

A child created by fork(2) inherits its parent’s nice value. The nice value is preserved
across execve(2).

The details on the condition for EPERM depend on the system. The above description
is what POSIX.1-2001 says, and seems to be followed on all System V-like systems.
Linux kernels before Linux 2.6.12 required the real or effective user ID of the caller to
match the real user of the process who (instead of its effective user ID). Linux 2.6.12
and later require the effective user ID of the caller to match the real or effective user ID
of the process who. All BSD-like systems (SunOS 4.1.3, Ultrix 4.2, 4.3BSD, FreeBSD
4.3, OpenBSD-2.5, ...) behave in the same manner as Linux 2.6.12 and later.

C library/kernel differences
The getpriority system call returns nice values translated to the range 40..1, since a neg-
ative return value would be interpreted as an error. The glibc wrapper function for get-
priority() translates the value back according to the formula unice = 20 — knice (thus,
the 40..1 range returned by the kernel corresponds to the range —20..19 as seen by user
space).

BUGS
According to POSIX, the nice value is a per-process setting. However, under the current
Linux/NPTL implementation of POSIX threads, the nice value is a per-thread attribute:
different threads in the same process can have different nice values. Portable applica-
tions should avoid relying on the Linux behavior, which may be made standards confor-
mant in the future.

SEE ALSO
nice(1), renice(1), fork(2), capabilities(7), sched(7)

Documentation/scheduler/sched—nice—design.txt in the Linux kernel source tree (since
Linux 2.6.23)

Linux man-pages 6.8 2024-05-02 279

getrandom(2) System Calls Manual getrandom(2)

NAME

getrandom — obtain a series of random bytes
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/random.h>

ssize_t getrandom(void buf [.buflen], size_t buflen, unsigned int flags);

DESCRIPTION
The getrandom() system call fills the buffer pointed to by buf with up to buflen random
bytes. These bytes can be used to seed user-space random number generators or for
cryptographic purposes.

By default, getrandom() draws entropy from the urandom source (i.e., the same source
as the /dev/urandom device). This behavior can be changed via the flags argument.

If the urandom source has been initialized, reads of up to 256 bytes will always return as
many bytes as requested and will not be interrupted by signals. No such guarantees ap-
ply for larger buffer sizes. For example, if the call is interrupted by a signal handler, it
may return a partially filled buffer, or fail with the error EINTR.

If the urandom source has not yet been initialized, then getrandom() will block, unless
GRND_NONBLOCK is specified in flags.

The flags argument is a bit mask that can contain zero or more of the following values
ORed together:

GRND_RANDOM

If this bit is set, then random bytes are drawn from the random source (i.e., the
same source as the /dev/random device) instead of the urandom source. The
random source is limited based on the entropy that can be obtained from envi-
ronmental noise. If the number of available bytes in the random source is less
than requested in buflen, the call returns just the available random bytes. If no
random bytes are available, the behavior depends on the presence of
GRND_NONBLOCK in the flags argument.

GRND_NONBLOCK
By default, when reading from the random source, getrandom() blocks if no
random bytes are available, and when reading from the urandom source, it
blocks if the entropy pool has not yet been initialized. If the GRND_NON-
BLOCK flag is set, then getrandom() does not block in these cases, but instead
immediately returns —1 with errno set to EAGAIN.

RETURN VALUE
On success, getrandom() returns the number of bytes that were copied to the buffer buf .
This may be less than the number of bytes requested via buflen if either GRND_RAN-
DOM was specified in flags and insufficient entropy was present in the random source
or the system call was interrupted by a signal.

On error, =1 is returned, and errno is set to indicate the error.

Linux man-pages 6.8 2024-05-02 280

getrandom(2) System Calls Manual getrandom(2)

ERRORS
EAGAIN
The requested entropy was not available, and getrandom() would have blocked
if the GRND_NONBLOCK flag was not set.

EFAULT
The address referred to by buf is outside the accessible address space.

EINTR
The call was interrupted by a signal handler; see the description of how inter-
rupted read(2) calls on "slow" devices are handled with and without the
SA_RESTART flag in the signal(7) man page.

EINVAL
An invalid flag was specified in flags.

ENOSYS
The glibc wrapper function for getrandom() determined that the underlying ker-
nel does not implement this system call.

STANDARDS

Linux.

HISTORY
Linux 3.17, glibc 2.25.

NOTES

For an overview and comparison of the various interfaces that can be used to obtain ran-
domness, see random(7).

Unlike /dev/random and /dev/urandom, getrandom() does not involve the use of path-
names or file descriptors. Thus, getrandom() can be useful in cases where chroot(2)
makes /dev pathnames invisible, and where an application (e.g., a daemon during start-
up) closes a file descriptor for one of these files that was opened by a library.

Maximum number of bytes returned
As of Linux 3.19 the following limits apply:

* When reading from the urandom source, a maximum of 32Mi-1 bytes is returned by
a single call to getrandom() on systems where int has a size of 32 bits.

* When reading from the random source, a maximum of 512 bytes is returned.

Interruption by a signal handler

When reading from the urandom source (GRND_RANDOM is not set), getrandom()
will block until the entropy pool has been initialized (unless the GRND_NONBLOCK
flag was specified). If a request is made to read a large number of bytes (more than
256), getrandom() will block until those bytes have been generated and transferred
from kernel memory to buf. When reading from the random source (GRND_RAN-
DOM s set), getrandom() will block until some random bytes become available (un-
less the GRND_NONBLOCK flag was specified).

The behavior when a call to getrandom() that is blocked while reading from the uran-
dom source is interrupted by a signal handler depends on the initialization state of the
entropy buffer and on the request size, buflen. If the entropy is not yet initialized, then
the call fails with the EINTR error. If the entropy pool has been initialized and the

Linux man-pages 6.8 2024-05-02 281

getrandom(2) System Calls Manual getrandom(2)

request size is large (buflen > 256), the call either succeeds, returning a partially filled
buffer, or fails with the error EINTR. If the entropy pool has been initialized and the re-
quest size is small (buflen <= 256), then getrandom() will not fail with EINTR. In-
stead, it will return all of the bytes that have been requested.

When reading from the random source, blocking requests of any size can be interrupted
by a signal handler (the call fails with the error EINTR).

Using getrandom() to read small buffers (<= 256 bytes) from the urandom source is the
preferred mode of usage.

The special treatment of small values of buflen was designed for compatibility with
OpenBSD’s getentropy(3), which is nowadays supported by glibc.

The user of getrandom() must always check the return value, to determine whether ei-
ther an error occurred or fewer bytes than requested were returned. In the case where
GRND_RANDOM is not specified and buflen is less than or equal to 256, a return of
fewer bytes than requested should never happen, but the careful programmer will check
for this anyway!

BUGS
As of Linux 3.19, the following bug exists:

» Depending on CPU load, getrandom() does not react to interrupts before reading all
bytes requested.

SEE ALSO
getentropy(3), random(4), urandom(4), random(7), signal(7)

Linux man-pages 6.8 2024-05-02 282

getresuid(2) System Calls Manual getresuid(2)

NAME

getresuid, getresgid — get real, effective, and saved user/group IDs
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE I* See feature_test_macros(7) */
#include <unistd.h>

int getresuid(uid_t *ruid, uid_t *euid, uid_t *suid);
int getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid);
DESCRIPTION
getresuid() returns the real UID, the effective UID, and the saved set-user-ID of the call-

ing process, in the arguments ruid, euid, and suid, respectively. getresgid() performs
the analogous task for the process’s group IDs.

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT
One of the arguments specified an address outside the calling program’s address
space.

STANDARDS
None. These calls also appear on HP-UX and some of the BSDs.

HISTORY
Linux 2.1.44, glibc 2.3.2.

The original Linux getresuid() and getresgid() system calls supported only 16-bit user
and group IDs. Subsequently, Linux 2.4 added getresuid32() and getresgid32(), sup-
porting 32-bit IDs. The glibc getresuid() and getresgid() wrapper functions transpar-
ently deal with the variations across kernel versions.

SEE ALSO
getuid(2), setresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.8 2024-05-02 283

getrlimit(2) System Calls Manual getrlimit(2)

NAME

getrlimit, setrlimit, prlimit — get/set resource limits
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlim);
int setrlimit(int resource, const struct rlimit *rlim);

int prlimit(pid_t pid, int resource,
const struct rlimit *_Nullable new_limit,
struct rlimit *_Nullable old_limit);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

prlimit():
_GNU_SOURCE

DESCRIPTION
The getrlimit() and setrlimit() system calls get and set resource limits. Each resource
has an associated soft and hard limit, as defined by the rlimit structure:

struct rlimit {
rlim_t rlim_cur; /* Soft Limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */
}:
The soft limit is the value that the kernel enforces for the corresponding resource. The
hard limit acts as a ceiling for the soft limit: an unprivileged process may set only its
soft limit to a value in the range from O up to the hard limit, and (irreversibly) lower its
hard limit. A privileged process (under Linux: one with the CAP_SYS RESOURCE
capability in the initial user namespace) may make arbitrary changes to either limit
value.

The value RLIM_INFINITY denotes no limit on a resource (both in the structure re-
turned by getrlimit() and in the structure passed to setrlimit())

The resource argument must be one of:

RLIMIT_AS

This is the maximum size of the process’s virtual memory (address space). The
limit is specified in bytes, and is rounded down to the system page size. This
limit affects calls to brk(2), mmap(2), and mremap(2), which fail with the error
ENOMEM upon exceeding this limit. In addition, automatic stack expansion
fails (and generates a SIGSEGYV that kills the process if no alternate stack has
been made available via sigaltstack(2)). Since the value is a long, on machines
with a 32-bit long either this limit is at most 2 GiB, or this resource is unlimited.

RLIMIT_CORE
This is the maximum size of a core file (see core(5)) in bytes that the process
may dump. When 0 no core dump files are created. When nonzero, larger
dumps are truncated to this size.

Linux man-pages 6.8 2024-05-02 284

getrlimit(2) System Calls Manual getrlimit(2)

RLIMIT_CPU

This is a limit, in seconds, on the amount of CPU time that the process can con-
sume. When the process reaches the soft limit, it is sent a SIGXCPU signal.
The default action for this signal is to terminate the process. However, the signal
can be caught, and the handler can return control to the main program. If the
process continues to consume CPU time, it will be sent SIGXCPU once per sec-
ond until the hard limit is reached, at which time it is sent SIGKILL. (This lat-
ter point describes Linux behavior. Implementations vary in how they treat
processes which continue to consume CPU time after reaching the soft limit.
Portable applications that need to catch this signal should perform an orderly ter-
mination upon first receipt of SIGXCPU.)

RLIMIT_DATA
This is the maximum size of the process’s data segment (initialized data, unini-
tialized data, and heap). The limit is specified in bytes, and is rounded down to
the system page size. This limit affects calls to brk(2), sbrk(2), and (since Linux
4.7) mmap(2), which fail with the error ENOMEM upon encountering the soft
limit of this resource.

RLIMIT_FSIZE
This is the maximum size in bytes of files that the process may create. Attempts
to extend a file beyond this limit result in delivery of a SIGXFSZ signal. By de-
fault, this signal terminates a process, but a process can catch this signal instead,
in which case the relevant system call (e.g., write(2), truncate(2)) fails with the
error EFBIG.

RLIMIT_LOCKS (Linux 2.4.0 to Linux 2.4.24)
This is a limit on the combined number of flock(2) locks and fcntl(2) leases that
this process may establish.

RLIMIT_MEMLOCK

This is the maximum number of bytes of memory that may be locked into RAM.
This limit is in effect rounded down to the nearest multiple of the system page
size. This limit affects mlock(2), mlockall(2), and the mmap(2)
MAP_LOCKED operation. Since Linux 2.6.9, it also affects the shmctl(2)
SHM_LOCK operation, where it sets a maximum on the total bytes in shared
memory segments (see shmget(2)) that may be locked by the real user ID of the
calling process. The shmctl(2) SHM_LOCK locks are accounted for separately
from the per-process memory locks established by mlock(2), mlockall(2), and
mmap(2) MAP_LOCKED; a process can lock bytes up to this limit in each of
these two categories.

Before Linux 2.6.9, this limit controlled the amount of memory that could be
locked by a privileged process. Since Linux 2.6.9, no limits are placed on the
amount of memory that a privileged process may lock, and this limit instead gov-
erns the amount of memory that an unprivileged process may lock.

RLIMIT_MSGQUEUE (since Linux 2.6.8)
This is a limit on the number of bytes that can be allocated for POSIX message
queues for the real user ID of the calling process. This limit is enforced for
mq_open(3). Each message queue that the user creates counts (until it is re-
moved) against this limit according to the formula:

Linux man-pages 6.8 2024-05-02 285

getrlimit(2) System Calls Manual getrlimit(2)

Since Linux 3.5;

bytes = attr.mg_maxmsg * sizeof(struct msg_msg) +
MIN(attr.mg_maxmsg, MQ_PRIO_MAX) *
sizeof(struct posix_msg_tree_node)+
/* For overhead */
attr.mg_maxmsg * attr.mg_msgsize;
/* For message data */

Linux 3.4 and earlier:

bytes = attr.mg_maxmsg * sizeof(struct msg _msg *) +
/* For overhead */
attr.mg_maxmsg * attr.mg_msgsize;
/* For message data */

where attr is the mq_attr structure specified as the fourth argument to
mq_open(3), and the msg_msg and posix_msg_tree_node structures are kernel-
internal structures.

The "overhead" addend in the formula accounts for overhead bytes required by
the implementation and ensures that the user cannot create an unlimited number
of zero-length messages (such messages nevertheless each consume some sys-
tem memory for bookkeeping overhead).

RLIMIT_NICE (since Linux 2.6.12, but see BUGS below)

This specifies a ceiling to which the process’s nice value can be raised using
setpriority(2) or nice(2). The actual ceiling for the nice value is calculated as
20 — rlim_cur. The useful range for this limit is thus from 1 (corresponding to a
nice value of 19) to 40 (corresponding to a nice value of —20). This unusual
choice of range was necessary because negative numbers cannot be specified as
resource limit values, since they typically have special meanings. For example,
RLIM_INFINITY typically is the same as —1. For more detail on the nice
value, see sched(7).

RLIMIT_NOFILE
This specifies a value one greater than the maximum file descriptor number that
can be opened by this process. Attempts (open(2), pipe(2), dup(2), etc.) to ex-
ceed this limit yield the error EMFILE. (Historically, this limit was named
RLIMIT_OFILE on BSD.)

Since Linux 4.5, this limit also defines the maximum number of file descriptors
that an unprivileged process (one without the CAP_SYS RESOURCE capabil-
ity) may have "in flight" to other processes, by being passed across UNIX do-
main sockets. This limit applies to the sendmsg(2) system call. For further de-
tails, see unix(7).
RLIMIT_NPROC

This is a limit on the number of extant process (or, more precisely on Linux,
threads) for the real user ID of the calling process. So long as the current num-

ber of processes belonging to this process’s real user ID is greater than or equal
to this limit, fork(2) fails with the error EAGAIN.

Linux man-pages 6.8 2024-05-02 286

getrlimit(2) System Calls Manual getrlimit(2)

The RLIMIT_NPROC limit is not enforced for processes that have either the
CAP_SYS_ADMIN or the CAP_SYS RESOURCE capability, or run with real
user 1D 0.

RLIMIT_RSS
This is a limit (in bytes) on the process’s resident set (the number of virtual
pages resident in RAM). This limit has effect only in Linux 2.4.x, x < 30, and
there affects only calls to madvise(2) specifying MADV_WILLNEED.

RLIMIT_RTPRIO (since Linux 2.6.12, but see BUGS)
This specifies a ceiling on the real-time priority that may be set for this process
using sched_setscheduler(2) and sched_setparam(2).

For further details on real-time scheduling policies, see sched(7)

RLIMIT_RTTIME (since Linux 2.6.25)
This is a limit (in microseconds) on the amount of CPU time that a process
scheduled under a real-time scheduling policy may consume without making a
blocking system call. For the purpose of this limit, each time a process makes a
blocking system call, the count of its consumed CPU time is reset to zero. The
CPU time count is not reset if the process continues trying to use the CPU but is
preempted, its time slice expires, or it calls sched_yield(2).

Upon reaching the soft limit, the process is sent a SIGXCPU signal. If the
process catches or ignores this signal and continues consuming CPU time, then
SIGXCPU will be generated once each second until the hard limit is reached, at
which point the process is sent a SIGKILL signal.

The intended use of this limit is to stop a runaway real-time process from lock-
ing up the system.

For further details on real-time scheduling policies, see sched(7)

RLIMIT_SIGPENDING (since Linux 2.6.8)
This is a limit on the number of signals that may be queued for the real user 1D
of the calling process. Both standard and real-time signals are counted for the
purpose of checking this limit. However, the limit is enforced only for
sigqueue(3); it is always possible to use kill(2) to queue one instance of any of
the signals that are not already queued to the process.

RLIMIT_STACK
This is the maximum size of the process stack, in bytes. Upon reaching this
limit, a SIGSEGYV signal is generated. To handle this signal, a process must em-
ploy an alternate signal stack (sigaltstack(2)).

Since Linux 2.6.23, this limit also determines the amount of space used for the
process’s command-line arguments and environment variables; for details, see
execve(2).

priimit()
The Linux-specific prlimit() system call combines and extends the functionality of setr-
limit() and getrlimit(). It can be used to both set and get the resource limits of an arbi-
trary process.

The resource argument has the same meaning as for setrlimit() and getrlimit().

Linux man-pages 6.8 2024-05-02 287

getrlimit(2) System Calls Manual getrlimit(2)

If the new_limit argument is not NULL, then the rlimit structure to which it points is
used to set new values for the soft and hard limits for resource. If the old_limit argu-
ment is not NULL, then a successful call to prlimit() places the previous soft and hard
limits for resource in the rlimit structure pointed to by old_limit.

The pid argument specifies the ID of the process on which the call is to operate. If pid
is 0, then the call applies to the calling process. To set or get the resources of a process
other than itself, the caller must have the CAP_SYS_RESOURCE capability in the
user namespace of the process whose resource limits are being changed, or the real, ef-
fective, and saved set user I1Ds of the target process must match the real user ID of the
caller and the real, effective, and saved set group IDs of the target process must match
the real group ID of the caller.

RETURN VALUE
On success, these system calls return 0. On error, =1 is returned, and errno is set to in-
dicate the error.

ERRORS
EFAULT
A pointer argument points to a location outside the accessible address space.

EINVAL
The value specified in resource is not valid; or, for setrlimit() or prlimit():
rlim—>rlim_cur was greater than rlim—>rlim_max.

EPERM
An unprivileged process tried to raise the hard limit; the CAP_SYS RE-
SOURCE capability is required to do this.

EPERM
The caller tried to increase the hard RLIMIT_NOFILE limit above the maxi-

mum defined by /proc/sys/fs/nr_open (see proc(5))

EPERM
(prlimit()) The calling process did not have permission to set limits for the
process specified by pid.

ESRCH
Could not find a process with the ID specified in pid.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
getrlimit(), setrlimit(), prlimit() Thread safety | MT-Safe

STANDARDS
getrlimit()
setrlimit()
POSIX.1-2008.

priimit()
Linux.

RLIMIT_MEMLOCK and RLIMIT_NPROC derive from BSD and are not specified
in POSIX.1; they are present on the BSDs and Linux, but on few other implementations.

Linux man-pages 6.8 2024-05-02 288

getrlimit(2) System Calls Manual getrlimit(2)

RLIMIT_RSS derives from BSD and is not specified in POSIX.1; it is nevertheless
present on most implementations. RLIMIT _MSGQUEUE, RLIMIT_NICE,
RLIMIT_RTPRIO, RLIMIT_RTTIME, and RLIMIT_SIGPENDING are Linux-
specific.

HISTORY
getrlimit()
setrlimit()
POSIX.1-2001, SVr4, 4.3BSD.

priimit()
Linux 2.6.36, glibc 2.13.

NOTES
A child process created via fork(2) inherits its parent’s resource limits. Resource limits
are preserved across execve(2).

Resource limits are per-process attributes that are shared by all of the threads in a
process.

Lowering the soft limit for a resource below the process’s current consumption of that
resource will succeed (but will prevent the process from further increasing its consump-
tion of the resource).

One can set the resource limits of the shell using the built-in ulimit command (limit in
csh(1)). The shell’s resource limits are inherited by the processes that it creates to exe-
cute commands.

Since Linux 2.6.24, the resource limits of any process can be inspected via
/proc/ pid/limits; see proc(5).

Ancient systems provided a vlimit() function with a similar purpose to setrlimit(). For
backward compatibility, glibc also provides vlimit(). All new applications should be
written using setrlimit().

C library/kernel ABI differences
Since glibc 2.13, the glibc getrlimit() and setrlimit() wrapper functions no longer in-
voke the corresponding system calls, but instead employ prlimit(), for the reasons de-
scribed in BUGS.

The name of the glibc wrapper function is prlimit(); the underlying system call is
prlimit64().

BUGS

In older Linux kernels, the SIGXCPU and SIGKILL signals delivered when a process
encountered the soft and hard RLIMIT_CPU limits were delivered one (CPU) second
later than they should have been. This was fixed in Linux 2.6.8.

In Linux 2.6.x kernels before Linux 2.6.17, a RLIMIT_CPU limit of 0 is wrongly
treated as "no limit" (like RLIM_INFINITY). Since Linux 2.6.17, setting a limit of 0
does have an effect, but is actually treated as a limit of 1 second.

A kernel bug means that RLIMIT_RTPRIO does not work in Linux 2.6.12; the prob-
lem is fixed in Linux 2.6.13.

In Linux 2.6.12, there was an off-by-one mismatch between the priority ranges returned
by getpriority(2) and RLIMIT_NICE. This had the effect that the actual ceiling for the

Linux man-pages 6.8 2024-05-02 289

getrlimit(2) System Calls Manual getrlimit(2)

nice value was calculated as 19 — rlim_cur. This was fixed in Linux 2.6.13.

Since Linux 2.6.12, if a process reaches its soft RLIMIT_CPU limit and has a handler
installed for SIGXCPU, then, in addition to invoking the signal handler, the kernel in-
creases the soft limit by one second. This behavior repeats if the process continues to
consume CPU time, until the hard limit is reached, at which point the process is killed.
Other implementations do not change the RLIMIT_CPU soft limit in this manner, and
the Linux behavior is probably not standards conformant; portable applications should
avoid relying on this Linux-specific behavior. The Linux-specific RLIMIT_RTTIME
limit exhibits the same behavior when the soft limit is encountered.

Kernels before Linux 2.4.22 did not diagnose the error EINVAL for setrlimit() when
rlim—>rlim_cur was greater than rlim—>rlim_max.

Linux doesn’t return an error when an attempt to set RLIMIT_CPU has failed, for com-
patibility reasons.

Representation of "'large™ resource limit values on 32-bit platforms

The glibc getrlimit() and setrlimit() wrapper functions use a 64-bit rlim_t data type,
even on 32-bit platforms. However, the rlim_t data type used in the getrlimit() and
setrlimit() system calls is a (32-bit) unsigned long. Furthermore, in Linux, the kernel
represents resource limits on 32-bit platforms as unsigned long. However, a 32-bit data
type is not wide enough. The most pertinent limit here is RLIMIT_FSIZE, which
specifies the maximum size to which a file can grow: to be useful, this limit must be rep-
resented using a type that is as wide as the type used to represent file offsets—that is, as
wide as a 64-bit off_t (assuming a program compiled with _FILE_OFFSET_BITS=64).

To work around this kernel limitation, if a program tried to set a resource limit to a value
larger than can be represented in a 32-bit unsigned long, then the glibc setrlimit() wrap-
per function silently converted the limit value to RLIM_INFINITY. In other words,
the requested resource limit setting was silently ignored.

Since glibc 2.13, glibc works around the limitations of the getrlimit() and setrlimit()
system calls by implementing setrlimit() and getrlimit() as wrapper functions that call
prlimit().

EXAMPLES
The program below demonstrates the use of prlimit().

#define _GNU_SOURCE

#define FILE_OFFSET_BITS 64
#include <err.h>

#include <stdint_h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/resource.h>
#include <time.h>

int
main(int argc, char *argv[])

{
pid_t pid;
struct rlimit old, new;

Linux man-pages 6.8 2024-05-02 290

getrlimit(2) System Calls Manual getrlimit(2)

struct rlimit *newp;

ifT (1(argc == 2 || argc == 4)) {
fprintf(stderr, "Usage: %s <pid> [<new-soft-limit> "
"<new-hard-limit>]\n", argv[0]);
exit(EXIT_FAILURE);

+
pid = atoi(argv[1l]); /* PID of target process */
newp = NULL;

ifT (argc == 4) {
new.rlim_cur = atoi(argv[2]);
new.rlim_max = atoi(argv|[3]);
newp = &new;

}

/* Set CPU time limit of target process; retrieve and display
previous limit */

if (priimit(pid, RLIMIT_CPU, newp, &old) == -1)
err(EXIT_FAILURE, "prlimit-1");
printf("'Previous limits: soft=%jd; hard=%jd\n*,
(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

/* Retrieve and display new CPU time limit */

it (prlimit(pid, RLIMIT_CPU, NULL, &old) == -1)
err(EXIT_FAILURE, "prliimit-2");
printf("'New limits: soft=%jd; hard=%jd\n’,
(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

exit(EXIT_SUCCESS);
}

SEE ALSO
prlimit(1), dup(2), fentl(2), fork(2), getrusage(2), mlock(2), mmap(2), open(2),
quotactl(2), sbrk(2), shmctl(2), malloc(3), sigqueue(3), ulimit(3), core(5),
capabilities(7), cgroups(7), credentials(7), signal(7)

Linux man-pages 6.8 2024-05-02 291

getrusage(2)

NAME

System Calls Manual

getrusage — get resource usage

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/resource.h>

int getrusage(int who, struct rusage *usage)

DESCRIPTION

getrusage(2)

getrusage() returns resource usage measures for who, which can be one of the follow-

ing:

RUSAGE_SELF

Return resource usage statistics for the calling process, which is the sum of re-
sources used by all threads in the process.

RUSAGE_CHILDREN
Return resource usage statistics for all children of the calling process that have
terminated and been waited for. These statistics will include the resources used
by grandchildren, and further removed descendants, if all of the intervening de-
scendants waited on their terminated children.

RUSAGE_THREAD (since Linux 2.6.26)
Return resource usage statistics for the calling thread. The _GNU_SOURCE
feature test macro must be defined (before including any header file) in order to
obtain the definition of this constant from <sys/resource.h>.

The resource usages are returned in the structure pointed to by usage, which has the fol-

lowing form:

struct rusage {
struct timeval ru_utime; /*
struct timeval ru_stime; /*

long
long
long
long
long
long
long
long
long
long
long
long
long
long

¥

ru_maxrss;
ru_iXrss;
ru_idrss;
ru_Isrss;
ru minflt;
ru_majflt;
ru_nswap;
ru_inblock;
ru_oublock;
ru_msgsnd;
ru_msgrcv;
ru_nsignals;
ru_nvcsw;
ru_nivcsw;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

user CPU time used */

system CPU time used */

maximum resident set size */
integral shared memory size */
integral unshared data size */
integral unshared stack size */
page reclaims (soft page faults) *
page faults (hard page faults) */
swaps */

block 1nput operations */

block output operations */

IPC messages sent */

IPC messages received */

signals received */

voluntary context switches */
involuntary context switches */

Not all fields are completed; unmaintained fields are set to zero by the kernel. (The un-
maintained fields are provided for compatibility with other systems, and because they

Linux man-pages 6.8

2024-05-02

292

getrusage(2) System Calls Manual getrusage(2)

may one day be supported on Linux.) The fields are interpreted as follows:

ru_utime
This is the total amount of time spent executing in user mode, expressed in a
timeval structure (seconds plus microseconds).

ru_stime
This is the total amount of time spent executing in kernel mode, expressed in a
timeval structure (seconds plus microseconds).

ru_maxrss (since Linux 2.6.32)
This is the maximum resident set size used (in kilobytes). For
RUSAGE_CHILDREN, this is the resident set size of the largest child, not the
maximum resident set size of the process tree.

ru_ixrss (unmaintained)
This field is currently unused on Linux.

ru_idrss (unmaintained)
This field is currently unused on Linux.

ru_isrss (unmaintained)
This field is currently unused on Linux.

ru_minflt
The number of page faults serviced without any 1/0 activity; here 1/O activity is
avoided by “reclaiming” a page frame from the list of pages awaiting realloca-
tion.

ru_majflt
The number of page faults serviced that required /O activity.

ru_nswap (unmaintained)
This field is currently unused on Linux.

ru_inblock (since Linux 2.6.22)
The number of times the filesystem had to perform input.

ru_oublock (since Linux 2.6.22)
The number of times the filesystem had to perform output.

ru_msgsnd (unmaintained)
This field is currently unused on Linux.

ru_msgrcv (unmaintained)
This field is currently unused on Linux.

ru_nsignals (unmaintained)
This field is currently unused on Linux.

ru_nvesw (since Linux 2.6)
The number of times a context switch resulted due to a process voluntarily giv-
ing up the processor before its time slice was completed (usually to await avail-
ability of a resource).

ru_nivesw (since Linux 2.6)
The number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

Linux man-pages 6.8 2024-05-02 293

getrusage(2) System Calls Manual getrusage(2)

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT
usage points outside the accessible address space.

EINVAL
who is invalid.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
getrusage() Thread safety | MT-Safe

STANDARDS
POSIX.1-2008.

POSIX.1 specifies getrusage(), but specifies only the fields ru_utime and ru_stime.
RUSAGE_THREAD is Linux-specific.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Before Linux 2.6.9, if the disposition of SIGCHLD is set to SIG_IGN then the re-
source usages of child processes are automatically included in the value returned by
RUSAGE_CHILDREN, although POSIX.1-2001 explicitly prohibits this. This non-
conformance is rectified in Linux 2.6.9 and later.

The structure definition shown at the start of this page was taken from 4.3BSD Reno.

Ancient systems provided a vtimes() function with a similar purpose to getrusage().
For backward compatibility, glibc (up until Linux 2.32) also provides vtimes(). All new
applications should be written using getrusage(). (Since Linux 2.33, glibc no longer
provides an vtimes() implementation.)

NOTES
Resource usage metrics are preserved across an execve(2).

SEE ALSO
clock_gettime(2), getrlimit(2), times(2), wait(2), wait4(2), clock(3), proc_pid_stat(5),
proc_pid_io(5)

Linux man-pages 6.8 2024-05-02 294

getsid(2) System Calls Manual getsid(2)

NAME
getsid — get session 1D

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#include <unistd.h>
pid_t getsid(pid_t pid);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
getsid():
_XOPEN_SOURCE >=500
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
getsid() returns the session ID of the process with process ID pid. If pid is 0, getsid()
returns the session ID of the calling process.

RETURN VALUE
On success, a session ID is returned. On error, (pid_t) —1 is returned, and errno is set to
indicate the error.

ERRORS
EPERM
A process with process ID pid exists, but it is not in the same session as the call-
ing process, and the implementation considers this an error.

ESRCH
No process with process ID pid was found.

VERSIONS
Linux does not return EPERM.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4. Linux 2.0.

NOTES
See credentials(7) for a description of sessions and session IDs.

SEE ALSO
getpgid(2), setsid(2), credentials(7)

Linux man-pages 6.8 2024-05-02 295

getsockname(2) System Calls Manual getsockname(2)

NAME

getsockname — get socket name
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION
getsockname() returns the current address to which the socket sockfd is bound, in the
buffer pointed to by addr. The addrlen argument should be initialized to indicate the
amount of space (in bytes) pointed to by addr. On return it contains the actual size of
the socket address.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

RETURN VALUE
On success, zero is returned. On error, =1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBADF
The argument sockfd is not a valid file descriptor.

EFAULT
The addr argument points to memory not in a valid part of the process address
space.

EINVAL
addrlen is invalid (e.g., is negative).

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

SEE ALSO
bind(2), socket(2), getifaddrs(3), ip(7), socket(7), unix(7)

Linux man-pages 6.8 2024-05-02 296

getsockopt(2) System Calls Manual getsockopt(2)

NAME

getsockopt, setsockopt — get and set options on sockets

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/socket.h>

int getsockopt(int sockfd, int level, int optname,
void optval[restrict *.optlen],
socklen_t *restrict optlen);

int setsockopt(int sockfd, int level, int optname,
const void optval[.optlen],
socklen_t optlen);

DESCRIPTION

getsockopt() and setsockopt() manipulate options for the socket referred to by the file
descriptor sockfd. Options may exist at multiple protocol levels; they are always present
at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the sockets API level, level is
specified as SOL_SOCKET. To manipulate options at any other level the protocol
number of the appropriate protocol controlling the option is supplied. For example, to
indicate that an option is to be interpreted by the TCP protocol, level should be set to
the protocol number of TCP; see getprotoent(3).

The arguments optval and optlen are used to access option values for setsockopt(). For
getsockopt() they identify a buffer in which the value for the requested option(s) are to
be returned. For getsockopt(), optlen is a value-result argument, initially containing the
size of the buffer pointed to by optval, and modified on return to indicate the actual size
of the value returned. If no option value is to be supplied or returned, optval may be
NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for
socket level options, described below. Options at other protocol levels vary in format
and name; consult the appropriate entries in section 4 of the manual.

Most socket-level options utilize an int argument for optval. For setsockopt(), the argu-
ment should be nonzero to enable a boolean option, or zero if the option is to be dis-
abled.

For a description of the available socket options see socket(7) and the appropriate proto-
col man pages.

RETURN VALUE

On success, zero is returned for the standard options. On error, —1 is returned, and er-
rno is set to indicate the error.

Netfilter allows the programmer to define custom socket options with associated han-
dlers; for such options, the return value on success is the value returned by the handler.

Linux man-pages 6.8 2024-05-02 297

getsockopt(2) System Calls Manual getsockopt(2)

ERRORS

EBADF
The argument sockfd is not a valid file descriptor.

EFAULT
The address pointed to by optval is not in a valid part of the process address
space. For getsockopt(), this error may also be returned if optlen is not in a
valid part of the process address space.

EINVAL
optlen invalid in setsockopt(). In some cases this error can also occur for an in-
valid value in optval (e.g., for the IP_ADD_MEMBERSHIP option described
in ip(7)).

ENOPROTOOPT
The option is unknown at the level indicated.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

BUGS
Several of the socket options should be handled at lower levels of the system.

SEE ALSO

ioctl(2), socket(2), getprotoent(3), protocols(5), ip(7), packet(7), socket(7), tcp(7),
udp(7), unix(7)

Linux man-pages 6.8 2024-05-02 298

gettid (2) System Calls Manual gettid (2)

NAME

gettid — get thread identification
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE
#include <unistd.h>

pid_t gettid(void);

DESCRIPTION
gettid() returns the caller’s thread ID (TID). In a single-threaded process, the thread ID
is equal to the process ID (PID, as returned by getpid(2)). In a multithreaded process,
all threads have the same PID, but each one has a unique TID. For further details, see
the discussion of CLONE_THREAD in clone(2).

RETURN VALUE
On success, returns the thread ID of the calling thread.

ERRORS
This call is always successful.

STANDARDS

Linux.

HISTORY
Linux 2.4.11, glibc 2.30.

NOTES
The thread ID returned by this call is not the same thing as a POSIX thread ID (i.e., the
opaque value returned by pthread_self(3)).

In a new thread group created by a clone(2) call that does not specify the
CLONE_THREAD flag (or, equivalently, a new process created by fork(2)), the new
process is a thread group leader, and its thread group ID (the value returned by
getpid(2)) is the same as its thread ID (the value returned by gettid())

SEE ALSO
capget(2), clone(2), fentl(2), fork(2), get robust list(2), getpid(2), ioprio_set(2),
perf_event_open(2), sched_setaffinity(2), sched setparam(2), sched_setscheduler(2),
tgkill(2), timer_create(2)

Linux man-pages 6.8 2024-05-02 299

gettimeofday(2) System Calls Manual gettimeofday(2)

NAME

gettimeofday, settimeofday — get / set time
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/time.h>

int gettimeofday(struct timeval *restrict tv,
struct timezone *_Nullable restrict tz);
int settimeofday(const struct timeval *tv,
const struct timezone *_Nullable tz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

settimeofday():
Since glibc 2.19:
_DEFAULT_SOURCE
glibc 2.19 and earlier:
_BSD_SOURCE

DESCRIPTION

The functions gettimeofday() and settimeofday() can get and set the time as well as a

timezone.

The tv argument is a struct timeval (as specified in <sys/time.h>):

struct timeval {

time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

and gives the number of seconds and microseconds since the Epoch (see time(2)).

The tz argument is a struct timezone:

struct timezone {

int tz_minuteswest; /* minutes west of Greenwich */

int tz_dsttime;
}:

/* type of DST correction */

If either tv or tz is NULL, the corresponding structure is not set or returned. (However,
compilation warnings will result if tv is NULL.)

The use of the timezone structure is obsolete; the tz argument should normally be speci-
fied as NULL. (See NOTES below.)

Under Linux, there are some peculiar "warp clock™ semantics associated with the set-
timeofday() system call if on the very first call (after booting) that has a non-NULL tz
argument, the tv argument is NULL and the tz_minuteswest field is nonzero. (The
tz_dsttime field should be zero for this case.) In such a case it is assumed that the
CMOS clock is on local time, and that it has to be incremented by this amount to get
UTC system time. No doubt it is a bad idea to use this feature.

Linux man-pages 6.8

2024-05-02 300

gettimeofday(2) System Calls Manual gettimeofday(2)

RETURN VALUE
gettimeofday() and settimeofday() return O for success. On error, —1 is returned and
errno is set to indicate the error.

ERRORS
EFAULT
One of tv or tz pointed outside the accessible address space.

EINVAL
(settimeofday()): timezone is invalid.

EINVAL
(settimeofday()): tv.tv_sec is negative or tv.tv_usec is outside the range [O,
999,999].

EINVAL (since Linux 4.3)
(settimeofday()): An attempt was made to set the time to a value less than the
current value of the CLOCK_MONOTONIC clock (see clock_gettime(2)).

EPERM
The calling process has insufficient privilege to call settimeofday(); under Linux
the CAP_SYS_TIME capability is required.

VERSIONS
C library/kernel differences
On some architectures, an implementation of gettimeofday() is provided in the vdso(7).

The kernel accepts NULL for both tv and tz. The timezone argument is ignored by glibc
and musl, and not passed to/from the kernel. Android’s bionic passes the timezone ar-
gument to/from the kernel, but Android does not update the kernel timezone based on
the device timezone in Settings, so the kernel’s timezone is typically UTC.

STANDARDS
gettimeofday()
POSIX.1-2008 (obsolete).

settimeofday()
None.

HISTORY
SVrd, 4.3BSD. POSIX.1-2001 describes gettimeofday() but not settimeofday().
POSIX.1-2008 marks gettimeofday() as obsolete, recommending the use of
clock_gettime(2) instead.

Traditionally, the fields of struct timeval were of type long.

The tz_dsttime field
On a non-Linux kernel, with glibc, the tz_dsttime field of struct timezone will be set to a
nonzero value by gettimeofday() if the current timezone has ever had or will have a
daylight saving rule applied. In this sense it exactly mirrors the meaning of daylight(3)
for the current zone. On Linux, with glibc, the setting of the tz_dsttime field of struct
timezone has never been used by settimeofday() or gettimeofday(). Thus, the follow-
ing is purely of historical interest.

On old systems, the field tz_dsttime contains a symbolic constant (values are given be-
low) that indicates in which part of the year Daylight Saving Time is in force. (Note:

Linux man-pages 6.8 2024-05-02 301

gettimeofday(2)

System Calls Manual gettimeofday(2)

this value is constant throughout the year: it does not indicate that DST is in force, it just
selects an algorithm.) The daylight saving time algorithms defined are as follows:

DST_NONE
DST_USA
DST_AUST
DST_WET
DST_MET
DST_EET
DST_CAN
DST_GB
DST_RUM
DST_TUR

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

DST_AUSTALT /*

Of course it turned out that the period in which Daylight Saving Time is in force cannot
be given by a simple algorithm, one per country; indeed, this period is determined by
unpredictable political decisions. So this method of representing timezones has been

abandoned.
NOTES

not on DST */

USA style DST */
Australian style DST */
Western European DST */
Middle European DST */
Eastern European DST */
Canada */

Great Britain and Eire */
Romania */

Turkey */

Australian style with shift in 1986 */

The time returned by gettimeofday() is affected by discontinuous jumps in the system
time (e.g., if the system administrator manually changes the system time). If you need a
monotonically increasing clock, see clock_gettime(2).

Macros for operating on timeval structures are described in timeradd(3).

SEE ALSO

date(1), adjtimex(2),

Linux man-pages 6.8

clock gettime(2), time(2), ctime(3), ftime(3), timeradd(3),
capabilities(7), time(7), vdso(7), hwclock(8)

2024-05-02 302

getuid(2) System Calls Manual getuid(2)

NAME

getuid, geteuid — get user identity
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
uid_t getuid(void);
uid_t geteuid(void);
DESCRIPTION
getuid() returns the real user ID of the calling process.
geteuid() returns the effective user ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

In UNIX V6 the getuid() call returned (euid << 8) + uid. UNIX V7 introduced sepa-
rate calls getuid() and geteuid().

The original Linux getuid() and geteuid() system calls supported only 16-bit user IDs.
Subsequently, Linux 2.4 added getuid32() and geteuid32(), supporting 32-bit IDs. The
glibc getuid() and geteuid() wrapper functions transparently deal with the variations
across kernel versions.

On Alpha, instead of a pair of getuid() and geteuid() system calls, a single getxuid()
system call is provided, which returns a pair of real and effective UIDs. The glibc ge-
tuid() and geteuid() wrapper functions transparently deal with this. See syscall(2) for
details regarding register mapping.

SEE ALSO
getresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.8 2024-05-02 303

getunwind(2) System Calls Manual getunwind(2)

NAME

getunwind — copy the unwind data to caller’s buffer
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/unwind.h>
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] long syscall(SYS_getunwind, void buf [.buf_size],
size_t buf _size);

DESCRIPTION
Note: this system call is obsolete.

The 1A-64-specific getunwind() system call copies the kernel’s call frame unwind data
into the buffer pointed to by buf and returns the size of the unwind data; this data de-
scribes the gate page (kernel code that is mapped into user space).

The size of the buffer buf is specified in buf_size. The data is copied only if buf_size is
greater than or equal to the size of the unwind data and buf is not NULL; otherwise, no
data is copied, and the call succeeds, returning the size that would be needed to store the
unwind data.

The first part of the unwind data contains an unwind table. The rest contains the associ-
ated unwind information, in no particular order. The unwind table contains entries of
the following form:

ub4 start; (64-bit address of start of function)
u64 end; (64-bit address of end of function)
ué4 info; (BUF-relative offset to unwind info)

An entry whose start value is zero indicates the end of the table. For more information
about the format, see the 1A-64 Software Conventions and Runtime Architecture manual.

RETURN VALUE
On success, getunwind() returns the size of the unwind data. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
getunwind() fails with the error EFAULT if the unwind info can’t be stored in the space
specified by buf .

STANDARDS
Linux on 1A-64.

HISTORY
Linux 2.4.

This system call has been deprecated. The modern way to obtain the kernel’s unwind
data is via the vdso(7).

SEE ALSO
getauxval(3)

Linux man-pages 6.8 2024-05-02 304

getxattr(2) System Calls Manual getxattr(2)

NAME
getxattr, lgetxattr, fgetxattr — retrieve an extended attribute value

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/xattr.h>

ssize_t getxattr(const char *path, const char *name,
void value[.size], size_t size);

ssize_t lgetxattr(const char * path, const char *name,
void value[.size], size_t size);

ssize_t fgetxattr(int fd, const char *name,
void value[.size], size_t size);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories, sym-
bolic links, etc.). They are extensions to the normal attributes which are associated with
all inodes in the system (i.e., the stat(2) data). A complete overview of extended attrib-
utes concepts can be found in xattr(7).

getxattr() retrieves the value of the extended attribute identified by name and associated
with the given path in the filesystem. The attribute value is placed in the buffer pointed
to by value; size specifies the size of that buffer. The return value of the call is the num-
ber of bytes placed in value.

Igetxattr() is identical to getxattr(), except in the case of a symbolic link, where the
link itself is interrogated, not the file that it refers to.

fgetxattr() is identical to getxattr(), only the open file referred to by fd (as returned by
open(2)) is interrogated in place of path.

An extended attribute name is a null-terminated string. The name includes a namespace
prefix; there may be several, disjoint namespaces associated with an individual inode.
The value of an extended attribute is a chunk of arbitrary textual or binary data that was
assigned using setxattr(2).

If size is specified as zero, these calls return the current size of the named extended at-
tribute (and leave value unchanged). This can be used to determine the size of the buffer
that should be supplied in a subsequent call. (But, bear in mind that there is a possibility
that the attribute value may change between the two calls, so that it is still necessary to
check the return status from the second call.)

RETURN VALUE
On success, these calls return a nonnegative value which is the size (in bytes) of the ex-
tended attribute value. On failure, —1 is returned and errno is set to indicate the error.

ERRORS
E2BIG
The size of the attribute value is larger than the maximum size allowed; the at-
tribute cannot be retrieved. This can happen on filesystems that support very
large attribute values such as NFSv4, for example.

Linux man-pages 6.8 2024-05-02 305

getxattr(2) System Calls Manual getxattr(2)

ENODATA
The named attribute does not exist, or the process has no access to this attribute.
ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.
ERANGE
The size of the value buffer is too small to hold the result.
In addition, the errors documented in stat(2) can also occur.
STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

EXAMPLES
See listxattr(2).

SEE ALSO

getfattr(1), setfattr(1), listxattr(2), open(2), removexattr(2), setxattr(2), stat(2),
symlink(7), xattr(7)

Linux man-pages 6.8 2024-05-02 306

idle(2) System Calls Manual idle(2)

NAME
idle — make process O idle
SYNOPSIS

#include <unistd.h>
[[deprecated]] int idle(void);

DESCRIPTION
idle() is an internal system call used during bootstrap. It marks the process’s pages as
swappable, lowers its priority, and enters the main scheduling loop. idle() never returns.

Only process 0 may call idle(). Any user process, even a process with superuser permis-
sion, will receive EPERM.

RETURN VALUE
idle() never returns for process 0, and always returns —1 for a user process.

ERRORS
EPERM
Always, for a user process.

STANDARDS
Linux.

HISTORY
Removed in Linux 2.3.13.

Linux man-pages 6.8 2024-05-02 307

init_module(2) System Calls Manual init_module(2)

NAME
init_module, finit_module — load a kernel module

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#include <linux/module.h> /* Definition of MODULE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_init_module, void module_image][.len], unsigned long len,
const char *param_values);

int syscall(SYS_finit_module, int fd,
const char *param_values, int flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
init_module() loads an ELF image into kernel space, performs any necessary symbol
relocations, initializes module parameters to values provided by the caller, and then runs
the module’s init function. This system call requires privilege.

The module_image argument points to a buffer containing the binary image to be
loaded; len specifies the size of that buffer. The module image should be a valid ELF
image, built for the running kernel.

The param_values argument is a string containing space-delimited specifications of the
values for module parameters (defined inside the module using module_param() and
module_param_array())The kernel parses this string and initializes the specified para-
meters. Each of the parameter specifications has the form:

name[=value[,value...]]

The parameter name is one of those defined within the module using module_param()
(see the Linux kernel source file include/linux/moduleparam.h). The parameter value is
optional in the case of bool and invbool parameters. Values for array parameters are
specified as a comma-separated list.

finit_module()
The finit_module() system call is like init_module(), but reads the module to be loaded
from the file descriptor fd. It is useful when the authenticity of a kernel module can be
determined from its location in the filesystem; in cases where that is possible, the over-
head of using cryptographically signed modules to determine the authenticity of a mod-
ule can be avoided. The param_values argument is as for init_module().

The flags argument modifies the operation of finit_module(). It is a bit mask value cre-
ated by ORing together zero or more of the following flags:

MODULE_INIT_IGNORE_MODVERSIONS
Ignore symbol version hashes.

MODULE_INIT_IGNORE_VERMAGIC
Ignore kernel version magic.

Linux man-pages 6.8 2024-05-02 308

init_module(2) System Calls Manual init_module(2)

MODULE_INIT_COMPRESSED_FILE (since Linux 5.17)
Use in-kernel module decompression.

There are some safety checks built into a module to ensure that it matches the kernel
against which it is loaded. These checks are recorded when the module is built and veri-
fied when the module is loaded. First, the module records a "vermagic"” string contain-
ing the kernel version number and prominent features (such as the CPU type). Second,
if the module was built with the CONFIG_MODVERSIONS configuration option en-
abled, a version hash is recorded for each symbol the module uses. This hash is based
on the types of the arguments and return value for the function named by the symbol. In
this case, the kernel version number within the "vermagic" string is ignored, as the sym-
bol version hashes are assumed to be sufficiently reliable.

Using the MODULE_INIT_IGNORE_VERMAGIC flag indicates that the "vermagic"
string is to be ignored, and the MODULE_INIT_IGNORE_MODVERSIONS flag in-
dicates that the symbol version hashes are to be ignored. If the kernel is built to permit
forced loading (i.e., configured with CONFIG_MODULE_FORCE_LOAD), then
loading continues, otherwise it fails with the error ENOEXEC as expected for mal-
formed modules.

If the kernel was build with CONFIG_MODULE_DECOMPRESS, the in-kernel de-
compression feature can be used. User-space code can check if the kernel supports de-
compression by reading the /sys/module/compression attribute. If the kernel supports
decompression, the compressed file can directly be passed to finit_module() using the
MODULE_INIT_COMPRESSED_FILE flag. The in-kernel module decompressor
supports the following compression algorithms:

e gzip (since Linux 5.17)
* Xz (since Linux 5.17)
» zstd (since Linux 6.2)

The kernel only implements a single decompression method. This is selected during
module generation accordingly to the compression method chosen in the kernel configu-
ration.

RETURN VALUE
On success, these system calls return 0. On error, =1 is returned and errno is set to indi-
cate the error.

ERRORS
EBADMSG (since Linux 3.7)
Module signature is misformatted.

EBUSY
Timeout while trying to resolve a symbol reference by this module.

EFAULT
An address argument referred to a location that is outside the process’s accessi-
ble address space.

ENOKEY (since Linux 3.7)
Module signature is invalid or the kernel does not have a key for this module.
This error is returned only if the kernel was configured with CONFIG_MOD-
ULE_SIG_FORCE; if the kernel was not configured with this option, then an

Linux man-pages 6.8 2024-05-02 309

init_module(2) System Calls Manual init_module(2)

invalid or unsigned module simply taints the kernel.

ENOMEM
Out of memory.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity), or module loading is disabled (see /proc/sys/kernel/modules_disabled in

proc(5)).
The following errors may additionally occur for init_module():

EEXIST
A module with this name is already loaded.

EINVAL
param_values is invalid, or some part of the ELF image in module_image con-
tains inconsistencies.

ENOEXEC
The binary image supplied in module_image is not an ELF image, or is an ELF
image that is invalid or for a different architecture.

The following errors may additionally occur for finit_module():

EBADF
The file referred to by fd is not opened for reading.

EFBIG
The file referred to by fd is too large.

EINVAL
flags is invalid.

EINVAL
The decompressor sanity checks failed, while loading a compressed module with
flag MODULE_INIT_COMPRESSED_FILE set.

ENOEXEC
fd does not refer to an open file.

EOPNOTSUPP (since Linux 5.17)
The flag MODULE_INIT_COMPRESSED _FILE is set to load a compressed
module, and the kernel was built without CONFIG_MODULE_DECOM-
PRESS.

ETXTBSY (since Linux 4.7)
The file referred to by fd is opened for read-write.

In addition to the above errors, if the module’s init function is executed and returns an
error, then init_module() or finit_module() fails and errno is set to the value returned
by the init function.

STANDARDS

Linux.

HISTORY

Linux man-pages 6.8 2024-05-02 310

init_module(2) System Calls Manual init_module(2)

finit_module()
Linux 3.8.

The init_module() system call is not supported by glibc. No declaration is provided in
glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did export
an ABI for this system call. Therefore, in order to employ this system call, it is (before
glibc 2.23) sufficient to manually declare the interface in your code; alternatively, you
can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the init_module() system call was rather different:

#include <linux/module.h>
int init_module(const char *name, struct module *image);

(User-space applications can detect which version of init_module() is available by call-
ing query_module(); the latter call fails with the error ENOSYS on Linux 2.6 and
later.)

The older version of the system call loads the relocated module image pointed to by im-
age into kernel space and runs the module’s init function. The caller is responsible for
providing the relocated image (since Linux 2.6, the init_module() system call does the
relocation).

The module image begins with a module structure and is followed by code and data as
appropriate. Since Linux 2.2, the module structure is defined as follows:

struct module {

unsigned long size_of _struct;
struct module *next;

const char *name;

unsigned long size;

long usecount;
unsigned long flags;

unsigned int nsyms;

unsigned int ndeps;

struct module_symbol *syms;

struct module_ref *deps;

struct module_ref *refs;

int :init)(void);
void (*cleanup) (void);

const struct exception_table _entry *ex_ table start;
const struct exception_table _entry *ex_table_end;
#ifdef __alpha
unsigned long gp;
#endif

33
All of the pointer fields, with the exception of next and refs, are expected to point within

the module body and be initialized as appropriate for kernel space, that is, relocated with
the rest of the module.

Linux man-pages 6.8 2024-05-02 311

init_module(2) System Calls Manual init_module(2)

NOTES
Information about currently loaded modules can be found in /proc/modules and in the
file trees under the per-module subdirectories under /sys/module.

See the Linux kernel source file include/linux/module.h for some useful background in-
formation.

SEE ALSO
create_module(2), delete_module(2), query_module(2), Ismod(8), modprobe(8)

Linux man-pages 6.8 2024-05-02 312

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

NAME

inotify_add_watch — add a watch to an initialized inotify instance
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/inotify.h>
int inotify_add_watch(int fd, const char * pathname, uint32_t mask);

DESCRIPTION
inotify_add_watch() adds a new watch, or modifies an existing watch, for the file
whose location is specified in pathname; the caller must have read permission for this
file. The fd argument is a file descriptor referring to the inotify instance whose watch
list is to be modified. The events to be monitored for pathname are specified in the
mask bit-mask argument. See inotify(7) for a description of the bits that can be set in
mask.

A successful call to inotify_add_watch() returns a unique watch descriptor for this ino-
tify instance, for the filesystem object (inode) that corresponds to pathname. If the
filesystem object was not previously being watched by this inotify instance, then the
watch descriptor is newly allocated. If the filesystem object was already being watched
(perhaps via a different link to the same object), then the descriptor for the existing
watch is returned.

The watch descriptor is returned by later read(2)s from the inotify file descriptor. These
reads fetch inotify_event structures (see inotify(7)) indicating filesystem events; the
watch descriptor inside this structure identifies the object for which the event occurred.

RETURN VALUE
On success, inotify_add_watch() returns a watch descriptor (a nonnegative integer).
On error, —1 is returned and errno is set to indicate the error.

ERRORS
EACCES
Read access to the given file is not permitted.

EBADF
The given file descriptor is not valid.

EEXIST
mask contains IN_MASK_CREATE and pathname refers to a file already be-
ing watched by the same fd.

EFAULT
pathname points outside of the process’s accessible address space.

EINVAL
The given event mask contains no valid events; or mask contains both
IN_MASK_ADD and IN_MASK_CREATE; or fd is not an inotify file de-
scriptor.

ENAMETOOLONG
pathname is too long.

Linux man-pages 6.8 2024-05-02 313

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

ENOENT

A directory component in pathname does not exist or is a dangling symbolic
link.

ENOMEM
Insufficient kernel memory was available.
ENOSPC

The user limit on the total number of inotify watches was reached or the kernel
failed to allocate a needed resource.

ENOTDIR
mask contains IN_ONLYDIR and pathname is not a directory.
STANDARDS
Linux.

HISTORY
Linux 2.6.13.

EXAMPLES
See inotify(7).
SEE ALSO
inotify_init(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.8 2024-05-02 314

inotify_init(2) System Calls Manual inotify_init(2)

NAME

inotify_init, inotify_initl — initialize an inotify instance
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/inotify.h>
int inotify_init(void);
int inotify_initl(int flags);
DESCRIPTION
For an overview of the inotify API, see inotify(7).

inotify_init() initializes a new inotify instance and returns a file descriptor associated
with a new inotify event queue.

If flags is 0, then inotify_initl() is the same as inotify_init(). The following values can
be bitwise ORed in flags to obtain different behavior:

IN_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description (see
open(2)) referred to by the new file descriptor. Using this flag saves extra calls
to fcntl(2) to achieve the same result.

IN_ CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the

description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

RETURN VALUE

On success, these system calls return a new file descriptor. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EINVAL
(inotify_init1()) An invalid value was specified in flags.

EMFILE
The user limit on the total number of inotify instances has been reached.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient kernel memory is available.

STANDARDS
Linux.

HISTORY
inotify_init()
Linux 2.6.13, glibc 2.4.

Linux man-pages 6.8 2024-05-02 315

inotify_init(2) System Calls Manual inotify_init(2)

inotify_init1()
Linux 2.6.27, glibc 2.9.

SEE ALSO
inotify_add_watch(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.8 2024-05-02 316

inotify_rm_watch(2) System Calls Manual inotify_rm_watch(2)

NAME

inotify_rm_watch — remove an existing watch from an inotify instance
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/inotify.h>
int inotify_rm_watch(int fd, int wd);

DESCRIPTION
inotify_rm_watch() removes the watch associated with the watch descriptor wd from
the inotify instance associated with the file descriptor fd.

Removing a watch causes an IN_IGNORED event to be generated for this watch de-
scriptor. (See inotify(7).)

RETURN VALUE
On success, inotify_rm_watch() returns zero. On error, —1 is returned and errno is set
to indicate the error.

ERRORS
EBADF
fd is not a valid file descriptor.

EINVAL
The watch descriptor wd is not valid; or fd is not an inotify file descriptor.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

SEE ALSO
inotify_add_watch(2), inotify_init(2), inotify(7)

Linux man-pages 6.8 2024-05-02 317

io_cancel(2) System Calls Manual io_cancel(2)

NAME
i0_cancel — cancel an outstanding asynchronous 1/O operation

LIBRARY
Standard C library (libc, —Ic)

Alternatively, Asynchronous I/O library (libaio, —laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of needed types */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_cancel, aio_context_t ctx_id, struct iocb *iocb,
struct io_event *result);

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_cancel() system call attempts to cancel an asynchronous I/O operation previ-
ously submitted with io_submit(2). The iocb argument describes the operation to be
canceled and the ctx_id argument is the AlO context to which the operation was submit-
ted. If the operation is successfully canceled, the event will be copied into the memory
pointed to by result without being placed into the completion queue.

RETURN VALUE

On success, io_cancel() returns 0. For the failure return, see VERSIONS.

ERRORS
EAGAIN
The iocb specified was not canceled.

EFAULT
One of the data structures points to invalid data.

EINVAL
The AIO context specified by ctx_id is invalid.

ENOSYS
io_cancel() is not implemented on this architecture.

VERSIONS
You probably want to use the io_cancel() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id
argument. Note also that the libaio wrapper does not follow the usual C library conven-
tions for indicating errors: on error it returns a negated error number (the negative of one
of the values listed in ERRORS). If the system call is invoked via syscall(2), then the
return value follows the usual conventions for indicating an error: —1, with errno set to a
(positive) value that indicates the error.

STANDARDS

Linux.

Linux man-pages 6.8 2024-05-02 318

io_cancel(2) System Calls Manual io_cancel(2)

HISTORY
Linux 2.5.

SEE ALSO
i0_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.8 2024-05-02 319

i0_destroy(2) System Calls Manual io_destroy(2)

NAME

io_destroy — destroy an asynchronous 1/O context
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/aio_abi.h> /* Definition of aio_context_t */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_destroy, aio_context_t ctx_id);
Note: glibc provides no wrapper for io_destroy(), necessitating the use of syscall(2).

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_destroy() system call will attempt to cancel all outstanding asynchronous 1/0
operations against ctx_id, will block on the completion of all operations that could not
be canceled, and will destroy the ctx_id.

RETURN VALUE
On success, io_destroy() returns 0. For the failure return, see VERSIONS.

ERRORS
EFAULT
The context pointed to is invalid.

EINVAL
The AlO context specified by ctx_id is invalid.

ENOSYS
i0_destroy() is not implemented on this architecture.

VERSIONS
You probably want to use the io_destroy() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id
argument. Note also that the libaio wrapper does not follow the usual C library conven-
tions for indicating errors: on error it returns a negated error number (the negative of one
of the values listed in ERRORS). If the system call is invoked via syscall(2), then the
return value follows the usual conventions for indicating an error: —1, with errno set to a
(positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
i0_cancel(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.8 2024-05-02 320

i0_getevents(2) System Calls Manual i0_getevents(2)

NAME
i0_getevents — read asynchronous I/O events from the completion queue

LIBRARY
Standard C library (libc, —Ic)

Alternatively, Asynchronous I/O library (libaio, —laio); see VERSIONS.
SYNOPSIS

#include <linux/aio_abi.h> /* Definition of *io_* types */

#include <sys/syscall.h> /* Definition of SYS_* constants */

#include <unistd.h>

int syscall(SYS_io_getevents, aio_context_t ctx_id,
long min_nr, long nr, struct io_event *events,
struct timespec *timeout);

Note: glibc provides no wrapper for io_getevents(), necessitating the use of syscall(2).

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_getevents() system call attempts to read at least min_nr events and up to nr
events from the completion queue of the AlO context specified by ctx_id.

The timeout argument specifies the amount of time to wait for events, and is specified as
a relative timeout in a timespec(3) structure.

The specified time will be rounded up to the system clock granularity and is guaranteed
not to expire early.

Specifying timeout as NULL means block indefinitely until at least min_nr events have
been obtained.

RETURN VALUE
On succe